蓝桥杯:K好数 动态规划解法
问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
输入格式
输入包含两个正整数,K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。
思路
- 因为数字不能相邻,那么第 i 位的填写,取决于第 i-1 位的数字
若第 i-1 位数字为 0 或者 k-1,第 i 位有 k-1 种选择
例:四进制,可选0,1,2,3
现有长度位2的数字:30,现在填第三位,可以选0,2,3
现有长度位2的数字:13,现在填第三位,可以选0,1,3
若第 i-1 位数字为 1~k-2,第 i 位有 k-2 种选择
例:四进制,可选0,1,2,3
现有长度位2的数字:31,现在填第三位,可以选1,3
现有长度位2的数字:12,现在填第三位,可以选0,2
那么长度为len,结尾数字为 x 的K好数的数目,就是
所有【长度为len-1,结尾数字与x不相邻的K好数的数目】之和
- 这样,大问题就被拆解为小问题,即长度为len的K好数数目和长度为len-1的K好数数目相关
可以定义状态:
dp[i][j]
表示以i
结尾,长度为j
的K好数的数目
状态转移方程:(Sum表示求和)
dp[i][j] = Sum(dp[<