蓝桥杯:K好数 动态规划解法

该博客介绍了蓝桥杯竞赛中的K好数问题,即在K进制表示中任意相邻的两位不相邻的数字组成的数。通过动态规划方法解决,分析了不同情况下的状态转移,并给出了代码实现。讨论了数据规模与约定,以及如何处理取模运算。
摘要由CSDN通过智能技术生成

蓝桥杯:K好数 动态规划解法

问题描述

如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

输入格式

输入包含两个正整数,K和L。

输出格式

输出一个整数,表示答案对1000000007取模后的值。

样例输入

4 2

样例输出

7

数据规模与约定

对于30%的数据,KL <= 106
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。

思路

  • 因为数字不能相邻,那么第 i 位的填写,取决于第 i-1 位的数字

若第 i-1 位数字为 0 或者 k-1,第 i 位有 k-1 种选择

例:四进制,可选0,1,2,3
现有长度位2的数字:30,现在填第三位,可以选0,2,3
现有长度位2的数字:13,现在填第三位,可以选0,1,3

若第 i-1 位数字为 1~k-2,第 i 位有 k-2 种选择

例:四进制,可选0,1,2,3
现有长度位2的数字:31,现在填第三位,可以选1,3
现有长度位2的数字:12,现在填第三位,可以选0,2

那么长度为len,结尾数字为 x 的K好数的数目,就是

所有【长度为len-1,结尾数字与x不相邻的K好数的数目】之和

  • 这样,大问题就被拆解为小问题,即长度为len的K好数数目和长度为len-1的K好数数目相关

可以定义状态:
dp[i][j]表示以i结尾,长度为j的K好数的数目

状态转移方程:(Sum表示求和)

dp[i][j] = Sum(dp[<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值