D.Choosing Capital for Treeland
The country Treeland consists of n cities, some pairs of them are connected with unidirectional roads. Overall there are n - 1 roads in the country. We know that if we don’t take the direction of the roads into consideration, we can get from any city to any other one.
The council of the elders has recently decided to choose the capital of Treeland. Of course it should be a city of this country. The council is supposed to meet in the capital and regularly move from the capital to other cities (at this stage nobody is thinking about getting back to the capital from these cities). For that reason if city a is chosen a capital, then all roads must be oriented so that if we move along them, we can get from city a to any other city. For that some roads may have to be inversed.
Help the elders to choose the capital so that they have to inverse the minimum number of roads in the country.
Input
The first input line contains integer n (2 ≤ n ≤ 2·105) — the number of cities in Treeland. Next n - 1 lines contain the descriptions of the roads, one road per line. A road is described by a pair of integers si, ti (1 ≤ si, ti ≤ n; si ≠ ti) — the numbers of cities, connected by that road. The i-th road is oriented from city si to city ti. You can consider cities in Treeland indexed from 1 to n.
Output
In the first line print the minimum number of roads to be inversed if the capital is chosen optimally. In the second line print all possible ways to choose the capital — a sequence of indexes of cities in the increasing order.
Examples
Input
3
2 1
2 3
Output
0
2
Input
4
1 4
2 4
3 4
Output
2
1 2 3
分析:
建边权为0的正向边,边权为1的反向边
第一次dfs求以x为根的正向流向子树最大改变量(即边权和)
第二次更新反向改变量
ps:
假设第一次dfs的时候根为1
则第二次dfs的时候1的反向已经是已知的(为0)
之后的每个父节点的反向都是已知的
code:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define ze(x) memset(x,0,sizeof(x))
typedef long long ll;
const int inf=0x3f3f3f3f;
const int inn=0x80808080;
using namespace std;
const int maxm=2e5+5;
int head[maxm],nt[maxm<<1],to[maxm<<1],w[maxm<<1],cnt;
int d[maxm];//正向
int f[maxm];//反向
void add(int x,int y,int z){
cnt++;
nt[cnt]=head[x];
head[x]=cnt;
to[cnt]=y;
w[cnt]=z;
}
void dp(int x,int fa){
for(int i=head[x];i;i=nt[i]){
int v=to[i];
if(v!=fa){
dp(v,x);
d[x]+=d[v]+w[i];
}
}
}
void dfs(int x,int fa){
for(int i=head[x];i;i=nt[i]){
int v=to[i];
if(v!=fa){
f[v]=d[x]-d[v]-w[i]+f[x]+(w[i]==0);//这个地方画图推导
dfs(v,x);
}
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
int n;
cin>>n;
for(int i=1;i<n;i++){
int a,b;
cin>>a>>b;
add(a,b,0);
add(b,a,1);//反向为1
}
dp(1,-1);
dfs(1,-1);
int ans=n;
for(int i=1;i<=n;i++){
d[i]+=f[i];
ans=min(ans,d[i]);
}
cout<<ans<<endl;
for(int i=1;i<=n;i++){
if(ans==d[i]){
cout<<i<<' ';
}
}
return 0;
}
1029

被折叠的 条评论
为什么被折叠?



