poj3417 Network (LCA+树上差分)

6 篇文章 0 订阅
4 篇文章 0 订阅
题意:

Yixght是一家名为SzqNetwork(SN)的公司的经理。现在她非常担心,因为她刚刚收到一个坏消息,说SN的商业竞争对手DxtNetwork(DN)打算攻击SN的网络。更不幸的是,原始的SN网络太弱了,我们只能把它当作一棵树。在形式上,SN网络中有N个节点,节点之间有N-1个双向通道连接,并且任何节点之间都存在一条路由。为了保护网络免受攻击,Yixght在一些节点之间建立了M个新的双向通道。
作为DN最好的黑客,你可以摧毁两个通道,一个在原来的网络中,另一个在M个新通道中。现在你的上级想知道有多少种方法可以把SN网络分成至少两部分。

思路:

题目就是说树边切掉一个,额外边切掉一个,使得图不连通

如果树中加入了一条边(a,b),则树出现环,此时将树上(a,b)路径中的一条边切掉,
再切掉这条额外边就可以使得图不连通

对于每条附加边(x,y),对x到y路径上的所有边的被覆盖次数+1
然后遍历所有边,如果被覆盖次数为0,则说明这条边不在环上,删除任意附加边都满足条件,答案累加m,如果被覆盖次数为1,说明这条边在环上,删除覆盖这条边的附加边就满足条件,答案累加1,如果被覆盖次数大于等于2,则说明这条边同时在多个环上,只删除两条边不可能使得图不连通

求边的被覆盖次数用树上差分+lca解决
把边权转变为点权,每条边全附在下面的点上
(x,y)上路径变覆盖数+1,即v[x]+1,v[y]+1,v[lca(x,y)]-2

最后dfs自底向上计算就能知道每条边被覆盖次数,并计算答案

额外边不用真的加到图中

ps:
马的,lca函数一个小于号写成大于号了,样例能过然后无限wa,可恶

code:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxm=2e5+5;
int head[maxm],nt[maxm<<1],to[maxm<<1],cnt;
int f[maxm][25];
int d[maxm];
int val[maxm];
int n,m;
int maxd;
void add(int x,int y){
    cnt++;nt[cnt]=head[x];head[x]=cnt;to[cnt]=y;
}
void dfs(int x){
    for(int i=head[x];i;i=nt[i]){
        int v=to[i];
        if(!d[v]){
            f[v][0]=x;
            d[v]=d[x]+1;
            dfs(v);
        }
    }
}
int lca(int a,int b){
    if(d[a]<d[b])swap(a,b);
    for(int i=maxd;i>=0;i--){
        if(d[f[a][i]]>=d[b]){
            a=f[a][i];
        }
    }
    if(a==b)return a;
    for(int i=maxd;i>=0;i--){
        if(f[a][i]!=f[b][i]){
            a=f[a][i];
            b=f[b][i];
        }
    }
    return f[a][0];
}
int ans;
void dfs2(int x,int fa){
    for(int i=head[x];i;i=nt[i]){
        int v=to[i];
        if(d[v]==d[x]+1){
            dfs2(v,x);
            val[x]+=val[v];
        }
    }
    if(x==1)return ;//点1上面没有东西了不用算
    if(val[x]==0){//计算答案
        ans+=m;
    }else if(val[x]==1){
        ans++;
    }
}
int main(){
    scanf("%d%d",&n,&m);
    maxd=(int)(log(n)/log(2))+1;
//    maxd=20;
    for(int i=1;i<n;i++){
        int a,b;
        scanf("%d%d",&a,&b);
        add(a,b);
        add(b,a);
    }
    d[1]=1;
    dfs(1);
    for(int j=1;j<=maxd;j++){
        for(int i=1;i<=n;i++){
            f[i][j]=f[f[i][j-1]][j-1];
        }
    }
    for(int i=1;i<=m;i++){
        int a,b;
        scanf("%d%d",&a,&b);
        val[a]++;
        val[b]++;
        val[lca(a,b)]-=2;
    }
    dfs2(1,-1);
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值