问题描述
N(1<=N<=20)头牛,编号为1…N,正在与FJ玩一个疯狂的游戏。奶牛会排成一行(牛线),问FJ此时的行号是多少。之后,FJ会给牛一个行号,牛必须按照新行号排列成线。
行号是通过以字典序对行的所有排列进行编号来分配的。比如说:FJ有5头牛,让他们排为行号3,排列顺序为:
1:1 2 3 4 5
2:1 2 3 5 4
3:1 2 4 3 5
因此,牛将在牛线1 2 4 3 5中。
之后,奶牛排列为“1 2 5 3 4”,并向FJ问他们的行号。继续列表:
4:1 2 4 5 3
5:1 2 5 3 4
FJ可以看到这里的答案是5。
FJ和奶牛希望你的帮助玩他们的游戏。他们需要K(1<=K<=10000)组查询,查询有两个部分:C_i将是“P”或“Q”的命令。
如果C_i是’P’,则查询的第二部分将是一个整数A_i(1 <= A_i <= N!),它是行号。此时,你需要回答正确的牛线。
如果C_i是“Q”,则查询的第二部分将是N个不同的整数B_ij(1 <= B_ij <= N)。这将表示一条牛线,此时你需要输出正确的行号。
输入输出样例
输入n,k
然后k组查询
输入 #1
5 2
P
3
Q
1 2 5 3 4
输出 #1
1 2 4 3 5
5
思路:
康托展开及康托展开逆运算模板题
康托展开可用于哈希的空间压缩
把排列映射成一个值,减少一些题目种mark数组(vis数组)开销
康托展开(把排列映射成值):
比如题目样例的12534(题目里n=5):
按位拆开后从左往右遍历:
起初ans=0
① 第一位是1,这一位后面没有比他小的,所以ans+=0*((n-1)!)
② 第二位是2,这一位后面没有比他小的,所以ans+=0*((n-2)!)
③ 第三位是5,这一位后面3和4比他小,共两个数,所以ans+=2*((n-3)!)
④ 第四位是3,这一位后面没有比他小的,所以ans+=0*((n-4)!)
最后ans=4
即有4种排列12534小,则12534的排名是5
康托展开逆运算(用康托展开的值求回原排列):
比如题目样例的x=3(题目里n=5):
x–,则x=2
① t=x/((n-1)!)得t=0,x对((n-1)!)取余,则最后t=0,x=2
② t=x/((n-2)!)得t=0,x对((n-2)!)取余,则最后t=0,x=2
③ t=x/((n-3)!)得t=1,x对((n-3)!)取余,则最后t=1,x=0
④ t=x/((n-4)!)得t=0,x对((n-4)!)取余,则最后t=0,x=0
⑤ t=x/((n-5)!)得t=0,x对((n-5)!)取余,则最后t=0,x=0
则:
第一个数字后面比他小得有0个,
第二个数字后面比他小得有0个,
第二个数字后面比他小得有1个,
第二个数字后面比他小得有0个,
第二个数字后面比他小得有0个,
退出第一个数字为1,第二个数字为2,第三个数字为4,第四个数字为3,第五个数字为5
答案为12435
ps:
求一个数后面有多少个数比他小(康托展开)和找第k大(康托展开逆运算)可以利用数据结构优化
code:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define int long long
const int maxm=21;
int n,m;
int a[maxm];
int mark[maxm];
int nn[maxm];
void init(){
nn[0]=1;
for(int i=1;i<=n;i++){
nn[i]=nn[i-1]*i;
}
}
void cantor(){
int ans=0;
for(int i=1;i<=n;i++){
int t=0;
for(int j=i+1;j<=n;j++){
if(a[i]>a[j]){
t++;
}
}
ans+=t*nn[n-i];
}
cout<<ans+1<<endl;
}
void rev(int x){
x--;
for(int i=1;i<=n;i++){
mark[i]=0;
}
for(int i=1;i<=n;i++){
int t=x/nn[n-i];
x%=nn[n-i];
int j;
for(j=1;j<=n;j++){
if(!mark[j]){
if(t==0)break;
t--;
}
}
a[i]=j;
mark[j]=1;
}
for(int i=1;i<=n;i++){
cout<<a[i]<<' ';
}
cout<<endl;
}
signed main(){
cin>>n>>m;
init();
while(m--){
char d;
cin>>d;
if(d=='P'){//求排第x的排列
int x;
cin>>x;
rev(x);
}else{//求出给定排列的排名
for(int i=1;i<=n;i++){
cin>>a[i];
}
cantor();
}
}
return 0;
}