题意:
给定一棵n个节点的树,树根为1,q次操作,操作有两种:
(1,x,val,k) x点权+val,x的儿子点权+val-k,x的儿子的儿子的点权+val-2k,下面依次为val-3k,val-4k…
(2,x) 查询x的点权,答案对1e9+7取模
数据范围:n,q<=3e5
解法:
按深度分层
假设现在进行操作(1,x,val,k)
点x所在层val
下一层val-k
下一层val-2k
因为按深度分层了,所以可以转化为:
点x所在层val
之后的每一层为val-(d[y]-d[x])*k
转换一下变为可得(val+d[x]*k)-(d[y]*k)
左边的项是以x的所有子树都需要加的固定值
右边的项与点y有关,但是k是固定值
可以将两个项拆开,左边的项用一颗线段树对子树的点累加
右边的项另开一颗线段树,记录每个点-d[x]*k的系数-k的和
假设第一颗树为T,第二棵为TT,那么x的点权为T.ask(x)+TT.ask(x)*d[x]
总结:有些式子可以拆项之后分别维护,例如这题维护第一项固定值和第二项提出d[y]之后维护系数
code:
#include<bits/stdc++.h>
using namespace std;
const int maxm=3e5+5;
const int mod=1e9+7;
vector<int>g[maxm];
int L[maxm],R[maxm],idx;
int d[maxm];
int n,q;
void dfs(int x){
L[x]=++idx;
for(int v:g[x]){
d[v]=d[x]+1;
dfs(v);
}
R[x]=idx;
}
struct Tree{
int a[maxm<<2];
void pushdown(int node){
if(a[node]){
a[node*2]=(a[node*2]+a[node])%mod;
a[node*2+1]=(a[node*2+1]+a[node])%mod;
a[node]=0;
}
}
void update(int st,int ed,int val,int l,int r,int node){
if(st<=l&&ed>=r){
a[node]=(a[node]+val)%mod;
return ;
}
pushdown(node);
int mid=(l+r)/2;
if(st<=mid)update(st,ed,val,l,mid,node*2);
if(ed>mid)update(st,ed,val,mid+1,r,node*2+1);
}
int ask(int x,int l,int r,int node){
if(l==r)return a[node];
pushdown(node);
int mid=(l+r)/2;
if(x<=mid)return ask(x,l,mid,node*2);
else return ask(x,mid+1,r,node*2+1);
}
}T,TT;
signed main(){
int n;scanf("%d",&n);
for(int i=2;i<=n;i++){
int fa;scanf("%d",&fa);
g[fa].push_back(i);
}
dfs(1);
int q;scanf("%d",&q);
while(q--){
int op;scanf("%d",&op);
if(op==1){
int x,val,k;scanf("%d%d%d",&x,&val,&k);
T.update(L[x],R[x],(val+1LL*d[x]*k)%mod,1,n,1);
TT.update(L[x],R[x],-k,1,n,1);
}else{
int x;scanf("%d",&x);
int a=T.ask(L[x],1,n,1);
int b=TT.ask(L[x],1,n,1);
int ans=((a+1LL*d[x]*b)%mod+mod)%mod;
printf("%d\n",ans);
}
}
return 0;
}