C. Palindromic Paths
题意:
给一个n*m的01矩阵
起点(1,1),终点(n,m)
每次只能走右边或者走下面
现在一次操作可以修改01矩阵中一个格子的值
问最少使用多少次操作,可以使得从点(1,1)到点(n,m)的所有路径的01序列都是回文串
数据范围:n,m<=30
解法:
分层的,左上的第一层和右下的第一层必须所有数字相同,第二层,第三层类似
如果总层数是奇数,中间的那层不用统计
统计每一层的0、1个数,取min累加就是答案
统计层数我是用的点到(1,1)或者(n,m)的距离,不需要bfs什么的,似乎还有更简单的方法。
code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=1e3+5;
int a[N][N];
int cnt[N][2];
int get(int i,int j,int x,int y){
return abs(x-i)+abs(y-j);
}
signed main(){
int T;cin>>T;
while(T--){
int n,m;cin>>n>>m;
int ma=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>a[i][j];
int x=min(get(i,j,1,1),get(i,j,n,m));
cnt[x][0]=cnt[x][1]=0;
ma=max(ma,x);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int x=min(get(i,j,1,1),get(i,j,n,m));
cnt[x][a[i][j]]++;
}
}
int step=n+m-1;//总步数(总层数)
int ans=0;
if(step%2==1)ma--;//中间层不用管
for(int i=0;i<=ma;i++){
ans+=min(cnt[i][0],cnt[i][1]);
}
cout<<ans<<endl;
}
return 0;
}
D. Two Divisors
题意:
给定长度为n的数组a
要求对每个a(i)找到两个数d1和d2,满足:
d1>1,d2>1
d1|a(i),d2|a(i),即d1和d2是a(i)的因子
gcd(d1+d2,a(i) )=1
数据范围:n<=5e5,a(i)<=1e7
解法:
两个gcd性质:
1.gcd(a,b)=gcd(a+b,b)
2.若p与a互质,那么gcd(a,b)=gcd(a,b*p)
3.存在定理:p1和p2互质,那么p1-p2,p1,p2三者互质
本题解法:
a(i)可以质因子分解为pk1pk2…pkn
令d1=pk1,d2=pk2…pkn
显然d1和d2互质,那么d1+d2,d1,d2三者互质
gcd(d1,d2)=gcd(d1+d2,d2)=gcd(d1+d2,d1*d2)=gcd(d1+d2,a(i) )=1
code:
#include<bits/stdc++.h>
using namespace std;
const int PN=1e7+5;
const int N=5e5+5;
int notprime[PN];
int prime[PN],cnt;
int ans[N][2];
void init(){
for(int i=2;i<PN;i++){
if(!notprime[i]){
prime[cnt++]=i;
}
for(int j=0;j<cnt;j++){
if(1LL*prime[j]*i>=PN)break;
notprime[prime[j]*i]=1;
if(i%prime[j]==0)break;
}
}
}
signed main(){
ios::sync_with_stdio(0);cin.tie(0);
init();
int n;cin>>n;
for(int i=1;i<=n;i++){
int x;cin>>x;
if(!notprime[x]){//质数无解
ans[i][0]=ans[i][1]=-1;
continue;
}
for(int j=0;j<cnt;j++){
if(x%prime[j]==0){
int xx=x;
int temp=1;
while(xx%prime[j]==0){
temp*=prime[j];
xx/=prime[j];
}
ans[i][0]=temp;
ans[i][1]=x/temp;
if(ans[i][1]==1){//d1,d2必须都大于1
ans[i][0]=ans[i][1]=-1;
}
break;
}
}
}
for(int i=1;i<=n;i++){
cout<<ans[i][0]<<' ';
}
cout<<endl;
for(int i=1;i<=n;i++){
cout<<ans[i][1]<<' ';
}
cout<<endl;
return 0;
}
E. Two Arrays
题意:
给定长度为n和m的两个数组a和b
保证b严格递增
现在要将a数组分割为m段
第i段的最小值为b(i)
问有多少种分割方法
数据范围:n,m<=5e5
解法:
b[i]递增,a[]切割之后第i段最小值mi等于b(i),则mi也是递增的
首先,b[m]的右端点一定是n,b[1]的左端点一定是1
预处理a[]的后缀min数组mi[],显然mi[]是非递减的
因为mi[]是非递减的,我们只需要判断每一段有多少种位置可以作为左端点就行了
对于每个mi[i],找到b[]中第一个pos,满足b[pos]=mi[i],因为b[]是递增的,所以pos可以用二分找
那么当前mi[i]可以作为分割后第pos段的左端点
计算出每个b[pos]有多少个左端点,然后利用乘法原理相乘就是答案
code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=998244353;
const int N=2e5+5;
int mi[N];
int a[N];
int b[N];
int cnt[N];
signed main(){
int n,m;cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=1;i<=m;i++){
cin>>b[i];
}
if(n<m){//无解情况
cout<<0<<endl;return 0;
}
mi[n]=a[n];
for(int i=n-1;i>=1;i--){//后缀min
mi[i]=min(mi[i+1],a[i]);
}
if(mi[1]!=b[1]){//无解情况
cout<<0<<endl;
return 0;
}
for(int i=1;i<=n;i++){//mi[]是非递减的
int pos=lower_bound(b+1,b+1+m,mi[i])-b;//找到mi[i]对应的b[pos]
if(pos<=m&&b[pos]==mi[i]){//位置i可以作为b[pos]的左端点
cnt[pos]++;
}
}
int ans=1;
for(int i=2;i<=m;i++){//从2开始是因为b[1]的左端点一定为1,是固定的
ans=ans*cnt[i]%mod;
}
cout<<ans<<endl;
return 0;
}