Educational Codeforces Round 89 (Rated for Div. 2)

C. Palindromic Paths

题意:

给一个n*m的01矩阵
起点(1,1),终点(n,m)
每次只能走右边或者走下面

现在一次操作可以修改01矩阵中一个格子的值
问最少使用多少次操作,可以使得从点(1,1)到点(n,m)的所有路径的01序列都是回文串

数据范围:n,m<=30

解法:

在这里插入图片描述

分层的,左上的第一层和右下的第一层必须所有数字相同,第二层,第三层类似
如果总层数是奇数,中间的那层不用统计

统计每一层的0、1个数,取min累加就是答案
统计层数我是用的点到(1,1)或者(n,m)的距离,不需要bfs什么的,似乎还有更简单的方法。

code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=1e3+5;
int a[N][N];
int cnt[N][2];
int get(int i,int j,int x,int y){
    return abs(x-i)+abs(y-j);
}
signed main(){
    int T;cin>>T;
    while(T--){
        int n,m;cin>>n>>m;
        int ma=0;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                cin>>a[i][j];
                int x=min(get(i,j,1,1),get(i,j,n,m));
                cnt[x][0]=cnt[x][1]=0;
                ma=max(ma,x);
            }
        }
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                int x=min(get(i,j,1,1),get(i,j,n,m));
                cnt[x][a[i][j]]++;
            }
        }
        int step=n+m-1;//总步数(总层数)
        int ans=0;
        if(step%2==1)ma--;//中间层不用管
        for(int i=0;i<=ma;i++){
            ans+=min(cnt[i][0],cnt[i][1]);
        }
        cout<<ans<<endl;
    }
    return 0;
}

D. Two Divisors

题意:

给定长度为n的数组a
要求对每个a(i)找到两个数d1和d2,满足:
d1>1,d2>1
d1|a(i),d2|a(i),即d1和d2是a(i)的因子
gcd(d1+d2,a(i) )=1

数据范围:n<=5e5,a(i)<=1e7

解法:

两个gcd性质:
1.gcd(a,b)=gcd(a+b,b)
2.若p与a互质,那么gcd(a,b)=gcd(a,b*p)
3.存在定理:p1和p2互质,那么p1-p2,p1,p2三者互质

本题解法:
a(i)可以质因子分解为pk1pk2…pkn
令d1=pk1,d2=pk2…pkn
显然d1和d2互质,那么d1+d2,d1,d2三者互质
gcd(d1,d2)=gcd(d1+d2,d2)=gcd(d1+d2,d1*d2)=gcd(d1+d2,a(i) )=1

code:
#include<bits/stdc++.h>
using namespace std;
const int PN=1e7+5;
const int N=5e5+5;
int notprime[PN];
int prime[PN],cnt;
int ans[N][2];
void init(){
    for(int i=2;i<PN;i++){
        if(!notprime[i]){
            prime[cnt++]=i;
        }
        for(int j=0;j<cnt;j++){
            if(1LL*prime[j]*i>=PN)break;
            notprime[prime[j]*i]=1;
            if(i%prime[j]==0)break;
        }
    }
}
signed main(){
    ios::sync_with_stdio(0);cin.tie(0);
    init();
    int n;cin>>n;
    for(int i=1;i<=n;i++){
        int x;cin>>x;
        if(!notprime[x]){//质数无解
            ans[i][0]=ans[i][1]=-1;
            continue;
        }
        for(int j=0;j<cnt;j++){
            if(x%prime[j]==0){
                int xx=x;
                int temp=1;
                while(xx%prime[j]==0){
                    temp*=prime[j];
                    xx/=prime[j];
                }
                ans[i][0]=temp;
                ans[i][1]=x/temp;
                if(ans[i][1]==1){//d1,d2必须都大于1
                    ans[i][0]=ans[i][1]=-1;
                }
                break;
            }
        }
    }
    for(int i=1;i<=n;i++){
        cout<<ans[i][0]<<' ';
    }
    cout<<endl;
    for(int i=1;i<=n;i++){
        cout<<ans[i][1]<<' ';
    }
    cout<<endl;
    return 0;
}

E. Two Arrays

题意:

给定长度为n和m的两个数组a和b
保证b严格递增
现在要将a数组分割为m段
第i段的最小值为b(i)

问有多少种分割方法

数据范围:n,m<=5e5

解法:

b[i]递增,a[]切割之后第i段最小值mi等于b(i),则mi也是递增的

首先,b[m]的右端点一定是n,b[1]的左端点一定是1
预处理a[]的后缀min数组mi[],显然mi[]是非递减的
因为mi[]是非递减的,我们只需要判断每一段有多少种位置可以作为左端点就行了
对于每个mi[i],找到b[]中第一个pos,满足b[pos]=mi[i],因为b[]是递增的,所以pos可以用二分找
那么当前mi[i]可以作为分割后第pos段的左端点

计算出每个b[pos]有多少个左端点,然后利用乘法原理相乘就是答案

code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=998244353;
const int N=2e5+5;
int mi[N];
int a[N];
int b[N];
int cnt[N];
signed main(){
    int n,m;cin>>n>>m;
    for(int i=1;i<=n;i++){
        cin>>a[i];
    }
    for(int i=1;i<=m;i++){
        cin>>b[i];
    }
    if(n<m){//无解情况
        cout<<0<<endl;return 0;
    }
    mi[n]=a[n];
    for(int i=n-1;i>=1;i--){//后缀min
        mi[i]=min(mi[i+1],a[i]);
    }
    if(mi[1]!=b[1]){//无解情况
        cout<<0<<endl;
        return 0;
    }
    for(int i=1;i<=n;i++){//mi[]是非递减的
        int pos=lower_bound(b+1,b+1+m,mi[i])-b;//找到mi[i]对应的b[pos]
        if(pos<=m&&b[pos]==mi[i]){//位置i可以作为b[pos]的左端点
            cnt[pos]++;
        }
    }
    int ans=1;
    for(int i=2;i<=m;i++){//从2开始是因为b[1]的左端点一定为1,是固定的
        ans=ans*cnt[i]%mod;
    }
    cout<<ans<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值