2019ICPC南京网络赛

2019ICPC南京网络赛


A. The beautiful values of the palace

题意:

有一个n*n的蛇形矩阵,如下图
在这里插入图片描述
矩阵的左下角的坐标是(1,1),右上角是(n,n)
每个格子的权值是这个格子中的数的数位和
现在给出m个坐标,标记这些点
q次询问,每次给出一个矩形坐标,问这个矩形里标记的点的权值和

n<=1e6,m,q<=1e5,保证n是奇数

解法:

子矩阵权值和问题扫描线思想+树状数组离线乱搞一下就行了

关键是如何计算每个格子里面的值,需要找规律推式子,
先判断在哪一圈,然后判断在哪一侧,分类讨论即可。

由于我太懒了,遂copy了别人的结论:

ll getval(ll x, ll y, ll n) {
	ll t = min(min(x, y), min(n - x + 1, n - y + 1));
	ll ta = 4 * (t - 1) * (n - t + 1);
	if (x == n - t + 1) ta += n - t - y + 2;//在所在圈层的右侧边
	else if (x == t) ta += 2 * n - 5 * t + y + 3;//左侧边
	else if (y == t) ta += 2 * n - 3 * t - x + 3;//下侧边
	else ta += 3 * n - 7 * t + x + 4;//上侧边
	return ta;
}

ps:
另一种做法:
将m个点看成m个加点操作
将询问拆成4个子矩阵询问,拆完之后变成4个(x,y)
对于每个询问(x,y),有贡献的点(x1,y1)需要满足:
1.x1<=x
2.y1<=y
3.坐标相同时加点操作要在修改操作之前,所以flag(加点)和flag(查询)也有一个大小关系

这是一个三维偏序问题,可以用cdq分治做。
不过我没试过,这种方法写起来太麻烦了。

code:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxm=1e6+5;
struct BIT{
    int c[maxm];
    void clear(){
        memset(c,0,sizeof c);
    }
    int lowbit(int i){
        return i&-i;
    }
    void add(int i,int t){
        while(i<maxm)c[i]+=t,i+=lowbit(i);
    }
    int ask(int i){
        int ans=0;
        while(i)ans+=c[i],i-=lowbit(i);
        return ans;
    }
}T;
struct Q{
    int x,y,flag,id;
}q[maxm<<2];
struct P{
    int x,y,val;
}p[maxm];
bool cmpQ(Q a,Q b){
    return a.x<b.x;
}
bool cmpP(P a,P b){
    return a.x<b.x;
}
int ans[maxm];
int n,m,k;
ll getval(ll x, ll y, ll n) {
	ll t = min(min(x, y), min(n - x + 1, n - y + 1));
	ll ta = 4 * (t - 1) * (n - t + 1);
	if (x == n - t + 1) ta += n - t - y + 2;//在所在圈层的右侧边
	else if (x == t) ta += 2 * n - 5 * t + y + 3;//左侧边
	else if (y == t) ta += 2 * n - 3 * t - x + 3;//下侧边
	else ta += 3 * n - 7 * t + x + 4;//上侧边
	return ta;
}
int cal(ll x){//数位和
    int ans=0;
    while(x)ans+=x%10,x/=10;
    return ans;
}
signed main(){
    int Cas;scanf("%d",&Cas);
    while(Cas--){
        T.clear();
        //
        scanf("%d%d%d",&n,&m,&k);
        for(int i=1;i<=m;i++){
            int x,y;scanf("%d%d",&x,&y);
            p[i]={x,y,cal(getval(x,y,n))};
        }
        sort(p+1,p+1+m,cmpP);
        int num=0;
        for(int i=1;i<=k;i++){
            int x1,y1,x2,y2;scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
            q[++num]={x1-1,y1-1,1,i};
            q[++num]={x1-1,y2,-1,i};
            q[++num]={x2,y1-1,-1,i};
            q[++num]={x2,y2,1,i};
        }
        sort(q+1,q+1+num,cmpQ);
        //
        for(int i=1;i<=k;i++){
            ans[i]=0;
        }
        int now=1;
        for(int i=1;i<=num;i++){
            while(now<=m&&p[now].x<=q[i].x){
                T.add(p[now].y,p[now].val);
                now++;
            }
            ans[q[i].id]+=q[i].flag*T.ask(q[i].y);
        }
        for(int i=1;i<=k;i++){
            printf("%d\n",ans[i]);
        }
    }
    return 0;
}

B.super_log

题意:

函数定义:
在这里插入图片描述

给定a,b,m
要求找到最小的x,满足log*a(x)>=b,
因为x会很大,所以将答案对m取模

数据范围:a,b,m<=1e6

解法:

容易猜到x肯定和a有关
当x=1的时候,值为0
当x=a的时候,值为1
当x=aa的时候,值为2

可以推出满足log*a(x)>=b的最小x就是:
在这里插入图片描述
一共b个a

递归进行欧拉降幂就行了
降幂公式:
在这里插入图片描述
当不保证互质的时候,降幂过程需要比较b和phi[p]的大小然后分情况,但是b很大,不好比较,
这篇博客中介绍了一种精妙的取模方法:

int mo(long long x,int mod) {return x<mod?x:x%mod+mod;}

这是在比较b和phi[p]的大小,如果b<phi[p],返回b;否则返回b%phi[p]+phi[p]。
(其他地方看到的一个说法:保留一个phi[p]是为了保证取模之后仍然满足欧拉降幂的公式,防止把原本大于phi[p]的数取模之后变为小于phi[p])

那么式子变为:
在这里插入图片描述
将solve函数和快速幂函数中的取模都替换成这个。
最后得到的答案需要加一个正常的%mod

code:
#include<bits/stdc++.h>
using namespace std;
const int maxm=1e6+5;
int notprime[maxm];
int prime[maxm],cnt;
int phi[maxm];
int a,b,m;
int mo(long long x,int mod){//所有取模的地方换成这个
    return x<mod?x:x%mod+mod;
}
void init(){//phi打表
    phi[1]=1;
    for(int i=2;i<maxm;i++){
        if(!notprime[i]){
            prime[cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;j<cnt;j++){
            if(1LL*prime[j]*i>=maxm)break;
            notprime[prime[j]*i]=1;
            phi[prime[j]*i]=phi[i]*(i%prime[j]?prime[j]-1:prime[j]);
            if(i%prime[j]==0)break;
        }
    }
}
int ppow(int a,int b,int mod){
    int ans=mo(1,mod);a=mo(a,mod);
    while(b){
        if(b&1)ans=mo(1LL*ans*a,mod);
        a=mo(1LL*a*a,mod);
        b>>=1;
    }
    return ans;
}
int solve(int a,int b,int m){
    if(m==1)return mo(a,m);
    if(b==0)return mo(1,m);
    if(b==1)return mo(a,m);
    return ppow(a,solve(a,b-1,phi[m]),m);
}
signed main(){
    init();
    //
    int T;scanf("%d",&T);
    while(T--){
        scanf("%d%d%d",&a,&b,&m);
        printf("%d\n",solve(a,b,m)%m);//这里要加一个%m
    }
    return 0;
}

D.Robots

题意:

给定n个顶点m条边的有向无环图
一个机器人从1出发,有等概率走任意一条出边或者原地不动,每次移动需要能量,能量大小等于当前经过的天数,求从1到n的能量消耗期望

数据范围:n,m<=2e5

解法:

D.Robots,DAG上期望DP


F. Greedy Sequence

题意:

给定长度为n的排列A,1<=A[i]<=n,找出n个串S满足5个条件:

1:S(i,1)=i
2:S(i,j)<=S(i,j-1)(就是单调不增)
3:S中相邻元素在数组A中的下标绝对值<=k
4:S的字典序最大
5:A中的每个元素只能使用一次。

输出每个串的长度

解法:

S(i,1)=i,字典序最大,那么S(i,2)就是找[pos-k,pos+k]内<i的最大值,以此类推
计算区间内<i的最大值可以用主席树搞


H.Holy Grail

题意:

n个点m条带权有向边,保证无自环和重边,边权可能是负数
然后给出6组数x,y,保证x到y没有边,
现在要求在x到y上加一条带权有向边,问每次所加权值最小为多少(可以是负数),
满足加边之后图中不能有负环,并将这条边加入图中。

数据范围:n<=300,m<=500

解法:

计算出反向边y到x的最短路,然后取相反值就是答案,这样环的权值为0,刚好没有负环
由于点的数量比较小,最短路可以直接用floyd做

code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=505;
const int inf=1e17;
int d[maxm][maxm];//原图
int g[maxm][maxm];//最短路图
int n,m;
void floyd(){
    for(int k=0;k<n;k++){
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                if(i==j||i==k||j==k)continue;
                g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
            }
        }
    }
}
signed main(){
    ios::sync_with_stdio(0);
    int T;cin>>T;
    while(T--){
        cin>>n>>m;
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                if(i==j)continue;
                d[i][j]=inf;
            }
        }
        for(int i=1;i<=m;i++){
            int a,b,c;cin>>a>>b>>c;
            d[a][b]=c;
        }
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                g[i][j]=d[i][j];
            }
        }
        for(int k=1;k<=6;k++){
            floyd();
            int a,b;cin>>a>>b;
            cout<<-g[b][a]<<endl;
            d[a][b]=-g[b][a];
            for(int i=0;i<n;i++){
                for(int j=0;j<n;j++){
                    g[i][j]=d[i][j];
                }
            }
        }
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值