题意:
给定n个点的树,每条边有颜色c(i)和长度d(i),颜色在[1,n-1]范围内,
q次独立的询问,每次询问给出x,y,u,v,
问将所有颜色为x的边,长度修改为y之后,u到v的距离是多少。
数据范围:n,q<=1e5
解法:
在线做法:
树上距离可以用lca做,
边权替换操作只需要计算u和v之间有多少个颜色为x的边以及其边权和,
是在树上建可持久化线段树,直接维护就行了,
(或者树剖转序列再建树)
离线做法:
将询问拆分为u,v,lca三个点的询问,
每个询问查询当前点到根的距离-颜色为x的边权和+cnt[x]*y
颜色为x的边权和、cnt[x]直接用数组就可以维护了,
最后答案就是ans[u]+ans[v]-2*ans[lca].
离线做法好写很多,挂的代码是离线做法.
code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define PI pair<int,int>
const int maxm=1e5+5;
struct EE{
int v,c,d;
};
struct QQ{
int x,y,op,id;
};
vector<EE>g[maxm];
vector<QQ>Q[maxm];
const int maxd=20;
int f[maxm][25];
int d[maxm];
int ans[maxm];
int n,q;
void dfs1(int x,int fa){
for(int j=1;j<=maxd;j++){
f[x][j]=f[f[x][j-1]][j-1];
}
for(auto i:g[x]){
int v=i.v;
if(v==fa)continue;
d[v]=d[x]+1;
f[v][0]=x;
dfs1(v,x);
}
}
int lca(int a,int b){
if(d[a]<d[b])swap(a,b);
for(int i=maxd;i>=0;i--){
if(d[f[a][i]]>=d[b]){
a=f[a][i];
}
}
if(a==b)return a;
for(int i=maxd;i>=0;i--){
if(f[a][i]!=f[b][i]){
a=f[a][i];
b=f[b][i];
}
}
return f[a][0];
}
//
int sum[maxm];
int cnt[maxm];
//
void dfs(int x,int fa,int dist){
for(auto i:Q[x]){
int x=i.x,y=i.y;
ans[i.id]+=i.op*(dist-sum[x]+cnt[x]*y);
}
for(auto i:g[x]){
int v=i.v;
if(v==fa)continue;
cnt[i.c]++;
sum[i.c]+=i.d;
dfs(v,x,dist+i.d);
cnt[i.c]--;
sum[i.c]-=i.d;
}
}
signed main(){
ios::sync_with_stdio(0);
cin>>n>>q;
for(int i=1;i<n;i++){
int a,b,c,d;cin>>a>>b>>c>>d;
g[a].push_back({b,c,d});
g[b].push_back({a,c,d});
}
dfs1(1,1);
for(int i=1;i<=q;i++){
int x,y,u,v;cin>>x>>y>>u>>v;
int lc=lca(u,v);
Q[u].push_back({x,y,1,i});
Q[v].push_back({x,y,1,i});
Q[lc].push_back({x,y,-2,i});
}
dfs(1,1,0);
for(int i=1;i<=q;i++){
cout<<ans[i]<<endl;
}
return 0;
}