gym101775 A. Chat Group(组合数递推)

题意:

给定n,k,要求计算 ∑ i = k n C ( n , i ) \sum_{i=k}^nC(n,i) i=knC(n,i)

数据范围:n<=1e9,k<=1e5

解法:

虽 然 n 很 大 , 但 是 k 很 小 , 考 虑 从 k 入 手 虽然n很大,但是k很小,考虑从k入手 nkk

a n s = ∑ i = k n C ( n , i ) = 2 n − ∑ i = 0 k − 1 C ( n , i ) ans=\sum_{i=k}^nC(n,i)=2^n-\sum_{i=0}^{k-1}C(n,i) ans=i=knC(n,i)=2ni=0k1C(n,i)

但 是 n 非 常 大 , 无 法 直 接 计 算 出 C ( n , i ) 但是n非常大,无法直接计算出C(n,i) nC(n,i)

C ( n , m ) = n ! m ! ( n − m ) ! C(n,m)=\frac {n!}{m!(n-m)!} C(n,m)=m!(nm)!n!

C ( n , m − 1 ) = n ! ( m − 1 ) ! ( n − m + 1 ) ! C(n,m-1)=\frac {n!}{(m-1)!(n-m+1)!} C(n,m1)=(m1)!(nm+1)!n!

C ( n , m ) = C ( n , m − 1 ) ∗ ( n − m + 1 ) m C(n,m)=\frac {C(n,m-1)*(n-m+1)}{m} C(n,m)=mC(n,m1)(nm+1)

从 C ( n , 0 ) 开 始 递 推 C ( n , i ) 即 可 从C(n,0)开始递推C(n,i)即可 C(n,0)C(n,i)

code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=1e5+5;
const int mod=1e9+7;
int ppow(int a,int b,int mod){
    int ans=1%mod;a%=mod;
    while(b){
        if(b&1)ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
signed main(){
    int T;scanf("%lld",&T);
    int cas=1;
    while(T--){
        int n,k;scanf("%lld%lld",&n,&k);
        int ans=ppow(2,n,mod);
        int now=1;//C(n,0)
        for(int i=1;i<=k;i++){
            ans=(ans-now)%mod;
            now=now*(n-i+1)%mod*ppow(i,mod-2,mod)%mod;
        }
        ans=(ans%mod+mod)%mod;
        printf("Case #%lld: %lld\n",cas++,ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值