题意:
数据范围:n<=1e5,a(i)<=1e9
解法:
如果有三个数,二进制下最高位相同,
那么后两个数异或之后,最高位1没掉了,一定满足条件,
此时的操作次数是一次.
因为a[i]<=1e9,那么二进制最多30位,
当n>=60时候,根据抽屉原理,一定存在三个数,最高位相同,
此时直接输出1.
接下来只需要处理n<60的情况了.
发现操作只有两种情况:
1.一段区间异或,枚举区间[l,r]的异或值,和a[l-1],a[r+1]比较即可,
复杂度O(n^2).
2.两端区间异或,此时两端区间[l1,r1],[l2,r2]一定相邻,证明放到最后了,
此时依然是枚举区间,复杂度O(n^3).
关于情况2的证明:
如果不相邻,即满足r1<l2,
由于不满足情况1,因此[l1,r1]的异或和<a[r1+1],即序列仍然满足非降,
[l2,r2]同理,由于a[l1-1]<=a[r1+1]<=a[l2-1]<=a[r2+1],
因此[l1,r1]的异或和一定<=[l2,r2]的异或和.
code:
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=2e6+5;
int sum[maxm];
int a[maxm];
int n;
signed main(){
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
if(n>=60){
cout<<1<<endl;
return 0;
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]^a[i];
int ans=1e9;
for(int l=1;l<=n;l++){
for(int r=l+1;r<=n;r++){
int v=sum[r]^sum[l-1];
if(r+1<=n&&v>a[r+1]){
ans=min(ans,r-l);
}else if(l-1>=1&&v<a[l-1]){
ans=min(ans,r-l);
}
for(int k=l+1;k<=r-1;k++){
int lc=sum[k]^sum[l-1];
int rc=sum[r]^sum[k];
if(rc<lc){
ans=min(ans,r-l-1);
}
}
}
}
if(ans==1e9)ans=-1;
cout<<ans<<endl;
return 0;
}