Wannafly挑战赛12 B.T95要减肥(dp)

该博客介绍了如何通过排序和动态规划算法解决一个寻找最大净快乐值匹配的问题。首先,对快乐值和痛苦值数组进行排序,然后计算每次匹配的净快乐值,并基于此构建动态规划模型。每跑3次比赛会额外增加一个常数m的快乐值。最终通过遍历动态规划数组找到最大值作为答案。代码中展示了具体的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

在这里插入图片描述
在这里插入图片描述

解法:
显然将快乐值最大的和痛苦值最小的匹配,
将a[]和b[]从小到大排序,令c[i]=b[i]-a[n-i+1],
则c[]为每次能获得的净快乐值,将c[]从大到小排序.

令d[i]为跑i次能获得的最大值,dp转移方程:
d[i]=d[i-1]+c[i]+(i%3==0?m:0),
每跑3次需要加上一个m.

最后ans=max(d[i]).
code:
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=2e6+5;
int d[maxm];
int a[maxm];
int b[maxm];
int c[maxm];
int n,m;
signed main(){
    ios::sync_with_stdio(0);cin.tie(0);
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>a[i];
    for(int i=1;i<=n;i++)cin>>b[i];
    sort(a+1,a+1+n);
    sort(b+1,b+1+n);
    for(int i=1;i<=n;i++)c[i]=b[i]-a[n-i+1];
    sort(c+1,c+1+n);
    reverse(c+1,c+1+n);
    for(int i=1;i<=n;i++){
        d[i]=d[i-1]+c[i];
        if(i%3==0)d[i]+=m;
    }
    int ans=0;
    for(int i=1;i<=n;i++)ans=max(ans,d[i]);
    cout<<ans<<endl;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值