题意:
你在一家生产小球的玩具厂工作,有 n 个小球,
编号从 lowLimit 开始,到 highLimit 结束(包括 lowLimit 和 highLimit ,
即 n == highLimit - lowLimit + 1)。
另有无限数量的盒子,编号从 1 到 infinity 。
你的工作是将每个小球放入盒子中,其中盒子的编号应当等于小球编号上每位数字的和。
例如,编号 321 的小球应当放入编号 3 + 2 + 1 = 6 的盒子,而编号 10 的小球应当放入编号 1 + 0 = 1 的盒子。
给你两个整数 lowLimit 和 highLimit ,返回放有最多小球的盒子中的小球数量。
如果有多个盒子都满足放有最多小球,只需返回其中任一盒子的小球数量。
数据范围:
1 <= lowLimit <= highLimit <= 1e5
解法:
由于l,r只有1e5,
因此直接暴力对每个数分解求sum就行了,
开一个map统计一下每种数位出现的频次.
code:
class Solution {
public:
int countBalls(int l, int r) {
map<int,int>mp;
int ans=0;
for(int i=l;i<=r;i++){
int sum=0;
int x=i;
while(x){
sum+=x%10;
x/=10;
}
ans=max(ans,++mp[sum]);
}
return ans;
}
};