题意:
给你一个 非递减 有序整数数组 nums 。
请你建立并返回一个整数数组 result,
它跟 nums 长度相同,且result[i] 等于 nums[i] 与数组中所有其他元素差的绝对值之和。
换句话说, result[i] 等于 sum(|nums[i]-nums[j]|) ,
其中 0 <= j < nums.length 且 j != i (下标从 0 开始)。
数据范围:
2 <= nums.length <= 1e5
1 <= nums[i] <= nums[i + 1] <= 1e4
解法:
令l[]为前缀和,r[]为后缀和
设下标为[0,n-1],
由于数组是非递减的,因此:
ans[i]+=r[i]-(n-1-i+1)*a[i],
ans[i]+=(i-0+1)*a[i]-l[i],
原理:
a[i]右边都是比a[i]大的数,设有x个数,那么这x个数的和减去x*a[i]就是a[i]与右边的数的绝对值差值,
左边同理.
code:
class Solution {
public:
vector<int> getSumAbsoluteDifferences(vector<int>& a) {
int n=a.size();
vector<int>l(n),r(n);
for(int i=0;i<n;i++){
if(i==0)l[i]=a[i];
else l[i]=l[i-1]+a[i];
}
for(int i=n-1;i>=0;i--){
if(i==n-1)r[i]=a[i];
else r[i]=r[i+1]+a[i];
}
vector<int>ans(n);
for(int i=0;i<n;i++){
ans[i]+=r[i]-(n-1-i+1)*a[i];
ans[i]+=(i-0+1)*a[i]-l[i];
}
return ans;
}
};