ABC146 D - Coloring Edges on Tree(思维,染色)

该博客讨论了一种图着色问题,其中每个点的边必须涂上不同的颜色。解法指出,最小颜色数等于图中度数最大的点的度数。通过以度数最大点为根进行深度优先搜索并递归地为边涂色,可以实现这一目标。代码示例展示了如何实现这一过程,并在最后输出了所需的颜色数和每条边的具体颜色。
摘要由CSDN通过智能技术生成
题意:

在这里插入图片描述

解法:
对于一个点,他的所有边颜色都必须不同,
那么显然最小颜色数就是所有点中的最大度数.

设x为度数最大的点,那么以x为树根开始dfs,对递归对边涂色即可.
code:
#include<bits/stdc++.h>
#define int long long
#define PI pair<int,int>
using namespace std;
const int maxm=1e5+5;
vector<PI>g[maxm];
int used[maxm];
int d[maxm];
int c[maxm];
int n;
void dfs(int x,int pre_id){//pre_id是连接父节点的边的编号
    int col=1;
    for(auto i:g[x]){
        int v=i.first,now_id=i.second;
        if(now_id==pre_id)continue;
        if(col==c[pre_id])col++;
        c[now_id]=col++;
        dfs(v,now_id);
    }
}
void solve(){
    cin>>n;
    for(int i=1;i<n;i++){
        int a,b;cin>>a>>b;
        g[a].push_back({b,i});
        g[b].push_back({a,i});
        d[a]++;d[b]++;
    }
    int ma=1;
    for(int i=1;i<=n;i++){
        if(d[ma]<d[i]){
            ma=i;
        }
    }
    dfs(ma,0);
    cout<<d[ma]<<endl;
    for(int i=1;i<n;i++){
        cout<<c[i]<<endl;
    }
}
signed main(){
    ios::sync_with_stdio(0);
    solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值