设计getMin功能的栈_C++题解

本文介绍了一种实现带有GetMin功能的栈的方法,通过使用数组和map两种容器,能够在O(1)的时间复杂度内获取栈中的最小值。同时,详细说明了如何进行Push和Pop操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目名称:设计getMin功能的栈

题目地址:传送门

题解

用两个容器,一个顺序容器,使用数组;一个关联容器,使用map。

用数组构造栈,用于Push和Pop。每Push一个元素进去,map中关键字对应的值加1(若map中没有此关键字,创建该键值对)。每Pop一个元素,map中冠电子对应的值减1(若map中此关键字的值减为0,删除该键值对)。

每次GetMin,输出map中第一个键值对的关键字。

Push, Pop代价O(logN)
GetMin代价O(1)

#include <iostream>
#include <map>
#define MAXN 1000010
using namespace std;

int Stack[MAXN], idx = 0;
map<int, int> mp;

void Push(int X)
{
    Stack[idx++] = X;
    if(mp.find(X) == mp.end())
    {
        mp[X] = 1;
    }
    else
    {
        ++mp[X];
    }
}

void Pop()
{
    if(idx == 0)    return;
    --idx;
    if(mp[Stack[idx]] == 1)
    {
        mp.erase(Stack[idx]);
    }
    else
    {
        --mp[Stack[idx]];
    }
}

void GetMin()
{
    cout<<mp.begin()->first<<endl;
}


int main()
{
    ios::sync_with_stdio(false);
    int N, X;
    string s;
    cin>>N;
    while(N--)
    {
        cin>>s;
        if(s[0] == 'p')
        {
            if(s == "push")
            {
                cin>>X;
                Push(X);
            }
            else
            {
                Pop();
            }
        }
        else
        {
            GetMin();
        }
    }
    
    return 0;
}
内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值