踩坑无数,记录一下
1 先梳理下载时遇到的问题
1.1 tensorflow、cuda、cudnn、cudatoolkit的关系
tensorflow在anconda中下载需要对应cuda和cudnn的版本,具体查看下面网址
对应cuda和cudnn的版本
其次cudatoolkit是一个cuda的工具包里面包括了我们要运行gpu的所有cuda工具。
总结:只需要下载对应的cudatoolkit和cudnn即可,cudatoolkit与上面网址中cuda的版本一致即可。
1.2 是否需要在本机下载cuda
既需要、又不需要
不需要的原因是,英伟达的显卡现在自带cuda驱动。可以自行查看,进入英伟达控制面板,选择帮助,查看系统信息
如果有这个CUDA64.DLL组件就不需要在本机下载cudatoolkit了,只需要在anconda的虚拟环境中下载即可。我们只需要确定好本机上的驱动要大于我们要下载的cudatoolkit的版本即可。
如果没有这个东西,我们就需要在本机下载cuda驱动了。
2 具体流程
我的电脑显卡是3050,例子为tensorflow2.9.0、cudatoolkit11.2.0、cudnn8.1.0
2.1 下载anconda这里略过
2.2 创建虚拟环境
conda create -n tensorflow-gpu python=3.9
conda create -n <环境名> python=3.9
2.3 下载cudatoolkit和cudnn
先在创建的虚拟环境中添加镜像源,这样下载速度会快一点。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
其次下载cudatoolkit、cudnn
conda install cudatoolkit=11.2.0
conda install cudatoolkit=<对应版本>
conda install cudnn=8.1.0
conda install cudnn=<对应版本>
2.4 下载tensorflow-gpu版本
pip install tensorflow-gpu==2.9.0 -i https://pypi.mirrors.ustc.edu.cn/simple
pip install tensorflow-gpu==<输入对应版本> -i https://pypi.mirrors.ustc.edu.cn/simple
2.5 验证是否可用GPU
import tensorflow as tf
tf.test.is_gpu_available()
返回TRUE即表示安装成功。
如有不足请大家指正。