anconda中下载tensorflow-gpu版

本文详细记录了在Windows系统上安装TensorFlow2.9.0GPU版本时,如何处理CUDA、CUDNN和cudatoolkit的关系,以及如何创建虚拟环境、添加镜像源并进行下载和验证GPU可用性的过程。
摘要由CSDN通过智能技术生成

踩坑无数,记录一下

1 先梳理下载时遇到的问题

1.1 tensorflow、cuda、cudnn、cudatoolkit的关系

tensorflow在anconda中下载需要对应cuda和cudnn的版本,具体查看下面网址
对应cuda和cudnn的版本
其次cudatoolkit是一个cuda的工具包里面包括了我们要运行gpu的所有cuda工具。
总结:只需要下载对应的cudatoolkit和cudnn即可,cudatoolkit与上面网址中cuda的版本一致即可。

1.2 是否需要在本机下载cuda

既需要、又不需要
不需要的原因是,英伟达的显卡现在自带cuda驱动。可以自行查看,进入英伟达控制面板,选择帮助,查看系统信息
在这里插入图片描述
如果有这个CUDA64.DLL组件就不需要在本机下载cudatoolkit了,只需要在anconda的虚拟环境中下载即可。我们只需要确定好本机上的驱动要大于我们要下载的cudatoolkit的版本即可。
在这里插入图片描述
如果没有这个东西,我们就需要在本机下载cuda驱动了。

2 具体流程

我的电脑显卡是3050,例子为tensorflow2.9.0、cudatoolkit11.2.0、cudnn8.1.0

2.1 下载anconda这里略过

2.2 创建虚拟环境

conda create -n tensorflow-gpu python=3.9
conda create -n <环境名> python=3.9

2.3 下载cudatoolkit和cudnn

先在创建的虚拟环境中添加镜像源,这样下载速度会快一点。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

其次下载cudatoolkit、cudnn

conda install cudatoolkit=11.2.0
conda install cudatoolkit=<对应版本>
conda install cudnn=8.1.0
conda install cudnn=<对应版本>

2.4 下载tensorflow-gpu版本

pip install tensorflow-gpu==2.9.0 -i  https://pypi.mirrors.ustc.edu.cn/simple  
pip install tensorflow-gpu==<输入对应版本> -i  https://pypi.mirrors.ustc.edu.cn/simple  

2.5 验证是否可用GPU

import tensorflow as tf
tf.test.is_gpu_available()

在这里插入图片描述
返回TRUE即表示安装成功。

如有不足请大家指正。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值