stable diffusion webui 升级 pytorch2.2

本文介绍了如何升级PyTorch2.2到最新版本,包括检查NVIDIA驱动、在特定环境下安装、修改webui-user.sh文件以及注意事项。虽然速度提升不明显,但对于有一定经验的用户和自动安装的开发者提供升级指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch 2.2已经发布了,官方说明是二倍的效率。

stable diffusion webui的主项目已经2个月没更新了,其它几个开源项目已经积极地在升级了。

如果要提前尝鲜的同学,可以自己升级一下,不过限于有一定经验的同学,而且是automatic1111项目原生安装的。如果是网上下载的一键安装包,就不建议升级了。(同时记得科学x上网)

1. 进webui的venv下的bin目录,windows版的,执行activate.bat, linux版的执行source activate. 进入venv模式。

2. 用nvidia-smi查验驱动版本,最新的是12.2, 但pytorch目前只有12.1. 低于12.1这个版本,就不用继续了。先考虑升级驱动。

3. 执行安装 

pip install torch==2.2.0+cu121 xformers --index-url https://download.pytorch.org/whl/cu121

耐心等待安装完成。

4. 执行deactivate  退出venv环境。

5. 修改主目录中的webui-user.sh文件中的python版本的3.10到3.11.

6. 然后就没有然后了,启动后,在web最底上看一下版本号。

7. 结论是速度没啥变化

### 解决 Stable Diffusion WebUI 安装依赖时遇到的错误 #### 1. 虚拟环境配置不当 如果虚拟环境未正确创建或激活,在 `stable-diffusion-webui\stable-diffusion-webui\venv\Scripts` 文件夹下找不到 Python 或 pip 可执行文件,则可能导致安装失败[^1]。 ```bash # 创建并激活虚拟环境 python -m venv venv source venv/Scripts/activate # Windows 使用 activate.bat ``` #### 2. PyTorch 版本不匹配 PyTorch 的版本应与 CUDA 版本相兼容。若使用 GPU 加速,需确保已安装合适的驱动程序和对应的 PyTorch 版本。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` #### 3. 缺少必要的编译工具 某些包可能需要 C++ 编译器来构建本地扩展模块。对于 Windows 用户来说,通常可以通过安装 Visual Studio Build Tools 来解决问题。 ```bash choco install visualstudio2019-workload-vctools ``` #### 4. 模型权重下载异常 当尝试加载预训练模型时,可能会因为网络连接不稳定或其他原因而无法成功获取所需的 `.pth` 文件。可以手动下载这些资源到指定目录: - `detection_Resnet50_Final.pth` - `parsing_parsenet.pth` 并将它们放置于 `stable-diffusion-webui/repositories/CodeFormer/weights/facelib` 下[^3]。 #### 5. 插件冲突处理 自 SD-WebUI 1.5 版本起,官方不再单独提供 LyCORIS 插件的支持,因此建议卸载旧版插件以避免潜在冲突[^4]。 ```bash cd stable-diffusion-webui/ git pull origin main pip uninstall lycoris ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值