题目描述
有一个
n
(
n
≤
1
0
6
)
n(n \le 10^6)
n(n≤106) 个结点的二叉树。给出每个结点的两个子结点编号(均不超过
n
n
n),建立一棵二叉树(根节点的编号为
1
1
1),如果是叶子结点,则输入 0 0
。
建好树这棵二叉树之后,依次求出它的前序、中序、后序列遍历。
输入格式
第一行一个整数 n n n,表示结点数。
之后 n n n 行,第 i i i 行两个整数 l l l、 r r r,分别表示结点 i i i 的左右子结点编号。若 l = 0 l=0 l=0 则表示无左子结点, r = 0 r=0 r=0 同理。
输出格式
输出三行,每行 n n n 个数字,用空格隔开。
第一行是这个二叉树的前序遍历。
第二行是这个二叉树的中序遍历。
第三行是这个二叉树的后序遍历。
样例 #1
样例输入 #1
7
2 7
4 0
0 0
0 3
0 0
0 5
6 0
样例输出 #1
1 2 4 3 7 6 5
4 3 2 1 6 5 7
3 4 2 5 6 7 1
代码
#include <bits/stdc++.h>
#define N 1000005
using namespace std;
struct Node
{
int left,right;
// char data;
}tree[N];
int n;
void pretree(int k)
{
cout << k << ' ';
if (tree[k].left) pretree(tree[k].left);
if (tree[k].right) pretree(tree[k].right);
}
void midtree(int k)
{
if (tree[k].left) midtree(tree[k].left);
cout << k << ' ';
if (tree[k].right) midtree(tree[k].right);
}
void postree(int k)
{
if (tree[k].left) postree(tree[k].left);
if (tree[k].right) postree(tree[k].right);
cout << k << ' ';
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
cin >> tree[i].left >> tree[i].right;
pretree(1); cout << endl;
midtree(1); cout << endl;
postree(1); cout << endl;
return 0;
}
洛谷 B3642