程序需求
1.定义结点结构,定义图结构。
2. 存储图信息;
3. 写出判断是否为连通图的函数并定义求最小生成树的函数;
4. 写出主函数。
算法的基本思想
1.邻接矩阵
图和树一样,没有顺序映像的存储结构,但可以借助数组的数据类型表示元素之间的关系。所以邻接矩阵是用于描述图中顶点之间关系(即弧或边的权)的矩阵。
(1)图中无邻接到自身的弧,因此邻接矩阵主对角线为全零。
(2) 无向图的邻接矩阵必然是对称矩阵。
(3) 无向图中,顶点的度是邻接矩阵对应行(或列)的非零元素之和;
2.最小生成树
对于带权的连通图(连通网)G,其生成树也是带权的,将权值之和最小的生成树称为最小生成树。
最小生成树的MST性质:
假设 N =(V,{E})是一个连通网,U是顶点集 V 的一个非空子集。若(u,v)是一条具有最小权值(代价)的边,其中 u ∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树。
3.普里姆(Prim)算法
基本思想:
(1)假设 G=(V,{E}) 是一个具有 n 个顶点的连通网络,T=(U,{TE})是 G 的最小生成树,其中 U 是 T 的顶点集,TE 是 T 的边集,U 和 TE 的初值均为空;
(2)从 V 中任取一个顶点(假定为 V1),将此顶点并入 U中,此时最小生成树顶点集 U={V1};
(3)从那些其中一个端点已在 U 中,另一端点仍在 U 外的所有边中,找一条最短(即权值最小)的边,设该边为(Vi,Vj),其中 Vi∈U,Vj∈V-U,并把该边和顶点 Vj分别并入 T 的边集 TE 和顶点集 U;
(4)如此进行下去,每次往生成树里并入一个顶点和一条边,直到 n-1 次后,把所有 n 个顶点都并入生成树 T 的顶点集 U 中,此时 U=V,TE中包含有(n-1)条边;这样,T 就是最后得到的最小生成树。
注意:实现该算法需附设一个辅助数组closedge,以记录从 U 到 V-U 具有最小代价的边。对每个顶点 vi∈V-U,在辅助数组中存在一个相应分量closedge[i-1]下标从0开始,它包括两个域。其中:lowcost存储该边上的权。显然,closedge[i-1].lowcost = Min{cost(u,vi)|u∈U},即vi到已生成子树的最短距离等于到U中所有顶点中的最小边的权值。adjvex域存储该边依附的在U中的顶点。
程序的流程
1.输入无向图
2.输出打印无向图邻接矩阵
3.输出最小生成树
算法的时空分析
算法时间复杂度O(n^2),与边无关,适合求解边稠密的网的最小生成树。
邻接矩阵
#include<stdio.h>
#include<stdlib.h>
#define O 32767//最大值:假定为无穷大
#define MAX_VERTEX_NUM 10//最大顶点数目
typedef int VRType;//顶点关系类型,对于无权图或网,用0或1表示相邻否;对于带权图或网,则为相应权值
typedef int VertexType;//顶点类型
typedef VRType AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedef struct{
VertexType vexs[MAX_VERTEX_NUM];//顶点向量
AdjMatrix arcs;//邻接矩阵
int vexnum, arcnum;//图的当前顶点数和弧数
//GraphKind kind;//图的种类标志
}MGraph;//邻接矩阵表示的图
typedef struct{
VertexType adjvex;
VRType lowcost;
}closedge[MAX_VERTEX_NUM];//记录从顶点集U到V-U的代价最小的边的辅助数组
closedge close;
int locateVex(MGraph G, VertexType v){
for(int i = 0; i < G.vexnum; i++){
if(G.vexs[i] == v)