区域和检索 - 数组不可变
题目
给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。
实现 NumArray 类:
NumArray(int[] nums) 使用数组 nums 初始化对象
int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是 sum(nums[i], nums[i + 1], … , nums[j]))
示例
输入:
[“NumArray”, “sumRange”, “sumRange”, “sumRange”]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]
解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1))
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))
题解
由题知,需要求出一定范围内的数组元素和,可以采用循环遍历的方法计算数组 nums 从下标 i 到 j 范围内的元素和,需要计算 j−i+1 个元素,时间复杂度较高,算法超出时间限制。因此,可以采用前缀和的方法,将计算元素和转换为计算两个前缀和之差,而初始化时前缀和已计算完毕,每次计算时的时间复杂度为 O(1)。
设前缀和数组 sums 的长度为 n+1 ,则不需要对 i=0 的情况特殊处理。此时有:
代码
class NumArray {
public:
vector<int> sums;
//求所有前缀和
NumArray(vector<int>& nums) {
int n=nums.size();
//初始化大小,避免数组越界
sums.resize(n+1);
for(int i=0;i<n;i++){
sums[i+1]=sums[i]+nums[i];
}
}
//计算给定范围内元素和,即前缀和之差
int sumRange(int left, int right) {
return sums[right+1]-sums[left];
}
};