铁路轨道表面缺陷检测数据集

真真实实环境下采集的数据集

图片如下

 

一共100+ , 图片加标签

### 铁路轨道表面缺陷数据集 对于机器学习或数据分析而言,获取高质量的数据集至关重要。针对铁路轨道表面缺陷检测领域,存在一些公开可用的数据集可以用于研究和开发工作[^1]。 #### 数据集特点 这些数据集通常包含不同类型的轨道缺陷图像样本,如裂纹、磨损和其他损伤情况。每张图片可能附带标签信息,描述具体的缺陷类别及其位置坐标。部分数据集还提供额外元数据,例如拍摄日期、地点以及环境条件等辅助特征。 #### 获取途径 多个机构和项目提供了此类资源供研究人员下载使用: - **欧盟资助的 Shift2Rail 计划**:该项目致力于提升欧洲轨道交通系统的性能,在其官网上或许能找到相关资料链接。 - **学术论文附件**:某些发表于国际会议(如 ICIP 2009)上的研究成果会随同发布所使用的实验数据集合,可以通过查阅文献找到线索并联系作者获得授权访问权限。 ```python import requests from bs4 import BeautifulSoup def find_datasets(): url = 'https://example.com/shift2rail' # 假设这是Shift2Rail计划网站地址 response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') datasets_links = [] for link in soup.find_all('a'): href = link.get('href') if '/dataset/' in str(href).lower(): # 查找含有'dataset'关键词的链接 datasets_links.append(link) return datasets_links ``` 此代码片段展示了如何通过网络爬虫技术自动查找特定网页中的数据集链接,实际应用时需替换为目标站点的真实URL路径。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值