UA MATH636 信息论6 微分熵

本文深入探讨了微分熵的概念,包括均匀分布和高斯分布的微分熵计算,以及条件微分熵和互信息。通过实例展示了离散型随机变量的微分熵特性,并引入了信源编码基础中的典型集和数据压缩中的量化原理。
摘要由CSDN通过智能技术生成


之前讨论的熵都是基于离散型随机变量讨论的,现在考虑基于连续型随机变量来定义熵。假设 X X X是连续型随机变量,概率密度函数为 f ( x ) f(x) f(x),定义 X X X的支撑集为
S u p p ( X ) = { x : f ( x ) > 0 } Supp(X) = \{x:f(x)>0\} Supp(X)={ x:f(x)>0}

Differential Entropy

定义微分熵为
h ( X ) = − ∫ S u p p ( X ) f ( x ) ln ⁡ f ( x ) d x h(X)=-\int_{Supp(X)}f(x)\ln f(x) dx h(X)=Supp(X)f(x)lnf(x)dx
因为 f ( x ) f(x) f(x)要用来做对数运算,所以要排除掉 f ( x ) = 0 f(x)=0 f(x)=0的部分,一般就把这个积分直接定义在 X X X的支撑集上了。

例1(均匀分布的微分熵)
如果 X ∼ U [ 0 , a ] X \sim U[0,a] XU[0,a],则 f ( x ) = 1 a f(x)=\frac{1}{a} f(x)=a1
h ( X ) = − ∫ 0 a 1 a ln ⁡ 1 a d x = ln ⁡ a h(X) = -\int_0^a \frac{1}{a} \ln \frac{1}{a} dx = \ln a h(X)=0aa1lna1dx=lna

与离散型随机变量的熵不同,微分熵可能为负。在这个例子中,如果 0 < a < 1 0<a<1 0<a<1 h ( X ) < 0 h(X)<0 h(X)<0。另外, e h ( X ) e^{h(X)} eh(X)表示支撑集 S u p p ( X ) Supp(X) Supp(X)的Lebesgue测度,即
e h ( X ) = ∣ S u p p ( X ) ∣ e^{h(X)} = |Supp(X)| eh(X)=Supp(X)
在这个例子中, e h ( X ) = a e^{h(X)}=a eh(X)=a a a a是区间 [ 0 , a ] [0,a] [0,a]的Lebesgue测度。

例2(正态分布的微分熵)
如果 X ∼ N ( 0 , σ 2 ) X \sim N(0,\sigma^2) XN(0,σ2),则
f ( x ) = 1 2 π σ exp ⁡ ( − x 2 2 σ 2 ) ln ⁡ f ( x ) = − x 2 2 σ 2 − ln ⁡ 2 π σ f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{x^2}{2\sigma^2}) \\ \ln f(x) = -\frac{x^2}{2\sigma^2} - \ln \sqrt{2 \pi} \sigma f(x)=2π σ1exp(2σ2x2)lnf(x)=2σ2x2ln2π σ
支撑集为 S u p p ( X ) = R Supp(X)=\mathbb{R} Supp(X)=R,从而
h ( X ) = − ∫ − ∞ ∞ f ( x ) ln ⁡ f ( x ) d x = ∫ − ∞ ∞ [ x 2 2 σ 2 + ln ⁡ 2 π σ ] f ( x ) d x = E X 2 2 σ 2 + ln ⁡ 2 π σ = ln ⁡ 2 π σ + 1 2 = 1 2 ln ⁡ 2 π e σ 2 h(X) = -\int_{-\infty}^{\infty} f(x) \ln f(x) dx \\ = \int_{-\infty}^{\infty} [\frac{x^2}{2\sigma^2} + \ln \sqrt{2 \pi} \sigma]f(x) dx \\ = \frac{EX^2}{2\sigma^2} + \ln \sqrt{2 \pi}\sigma = \ln \sqrt{2 \pi}\sigma + \frac{1}{2} = \frac{1}{2} \ln 2 \pi e \sigma^2 h(X)=f(x)lnf(x)dx=[2σ2x2+ln2π σ]f(x)dx=2σ2EX2+ln2π σ=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值