脑电特征中的微分熵(DE)计算

本文探讨了微分熵在脑电情绪识别竞赛中的应用,通过对比多种特征,发现微分熵表现最优。文章分析了微分熵的计算方法及其简化替代方案,并指出简化计算虽方便,但会影响分类精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近参加了一个脑电相关的竞赛,其中有一个赛道是情绪识别,根据脑电数据将情绪进行4分类,查了一些文献,使用了包括时域、频域、空间域的一些特征,最后发现微分熵作为特征的分类效果最好。

相关参考文献整理下载:

https://download.csdn.net/download/zhoudapeng01/12845100

微分熵作为作为香农熵在连续变量上的推广形式其计算比较简单:

参考:http://cg.cs.tsinghua.edu.cn/people/~Yongjin/N112018-00337.pdf

实际上,作为脑电的一个非线性特征,到这微分熵的计算已经很明确了,可是在看其他资料的时候发现有用功率谱近似代替微分熵的计算的,这就是个问题了,他这么简化的依据是什么呢?

参考:http://bcmi.sjtu.edu.cn/~zhujiayi/pdf/BachelorThesis.pdf

为了找这个简化运算的依据还真费了点时间,不过最后在《Differential Entropy Feature for EEG-based Vigilance Estimation》中找到了些依据。虽然可以如此简化运算,在实际应用中发现还是不简化的好,分类的结果更加准确。

相关参考文献下载:https://download.csdn.net/download/zhoudapeng01/12845100

 

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值