UA MATH564 概率论 计算至少有一个发生的概率:Waring公式
在推出Poincare公式后,计算 n n n个事件中至少有一个事件发生的概率的问题就彻底解决了。但数学家们又开始纠结了,Poincare公式只能够计算至少有一个发生的概率,那有没有能计算恰好有 m m m个事件同时发生的概率的方法呢?
假设用 B m B_m Bm表示 A 1 , ⋯ , A n A_1,\cdots,A_n A1,⋯,An中正好有 m m m个发生的事件,则
P ( B m ) = ∑ k = m n ( − 1 ) k − m C k m S k P(B_m) = \sum_{k=m}^n (-1)^{k-m}C_k^mS_k P(Bm)=k=m∑n(−1)k−mCkmSk
这个公式叫做Waring公式。其中 S k S_k Sk就是上一讲定义的记号 S m = ∑ 1 ≤ i 1 < i 2 < ⋯ < i m ≤ n P ( A i 1 ∩ A i 2 ∩ ⋯ ∩ A i m ) S_m = \sum_{1 \le i_1 < i_2 < \cdots < i_m \le n} P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_m}) Sm=1≤i1<i2<⋯<im≤n∑P(Ai1∩Ai2∩⋯∩Aim)
基于组合学的证明方法
Feller的Introduction to Probability and its application中给出了基于组合学的证明方法。用反证法。我们要证明的公式等价于:假设 E E E是一个恰好包含在 l l l个事件中的子事件,当且仅当 l = m l=m l=m时, P ( E ) P(E) P(E)才是 P ( B m ) P(B_m) P(Bm)的一部分。显然这时 P ( E ) P(E) P(E)也是 S 1 , S 2 , ⋯ , S l S_1,S_2,\cdots,S_l S1,S2,⋯,Sl的一部分,并且 P ( E ) P(E) P(