组合恒等式1 五个基本的组合恒等式 基础与简单例子

本文介绍了组合恒等式在离散数学和组合学中的重要性,详细讲解了四个基本的组合恒等式,包括对称性、杨辉三角、多项式系数的唯一性和二项式定理,并通过例题展示了如何运用这些恒等式进行计算和证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

组合恒等式是组合学中一个非常有趣但也十分具有挑战性的小分支,它常常以复杂的离散概率论问题的归一性的基础,或者数学竞赛题目的形式出现。组合恒等式是无穷的,因此掌握组合恒等式的证明、计算技巧尤为重要。这一讲就从五个大家高中就学过的组合恒等式开始。

四个基本的组合恒等式

等式一 组合数的对称性
C n k = C n n − k C_n^k = C_n^{n-k} Cnk=Cnnk

等式二 杨辉三角
C n k = C n − 1 k + C n − 1 k − 1 C_n^k = C_{n-1}^k + C_{n-1}^{k-1} Cnk=Cn1k+Cn1k1

等式三 多项式系数的唯一性
C n k C k m = C n m C n − m k − m = C n k − m C n − k + m m , m ≤ k ≤ n C_n^kC_k^m = C_n^{m}C_{n-m}^{k-m} = C_n^{k-m}C_{n-k+m}^m,m\le k \le n CnkCkm=CnmCnmkm=CnkmCnk+mm,mkn

这个等式表示多项式系数的唯一性,可以验证这三项表示的都是 ( n ; m , k − m , n − k ) (n;m,k-m,n-k) (n;m,km,nk)的多重组合数,即把 n n n个白球中的 m m m个涂红、 k − m k-m km个涂绿、 n − k n-k nk个涂黑的可能的方法数目:
n ! m ! ( k − m ) ! ( n − k ) ! \frac{n!}{m!(k-m)!(n-k)!} m!(km)!(nk)!n!

在计数的时候,涂红色/绿色/黑色的顺序不影响总数,这就有了上面的恒等式,所以是多项式系数的唯一性。这个恒等式的一个特例也非常有用,假设 m = 1 m=1 m=1
k C n k = n C n − 1 k − 1 kC_n^k = nC_{n-1}^{k-1} kCnk=nCn1k1

等式四 二项式定理
( x + y ) n = ∑ i = 0 n C n i x i y n − i (x+y)^n = \sum_{i=0}^n C_n^ix^iy^{n-i} (x+y)n=i=0nCnixiyni

特例,如果 x = y = 1 x=y=1 x=y=1,则
∑ i = 0 n C n i = 2 n \sum_{i=0}^n C_n^i = 2^n i=0nCni=2n

如果 x = 1 , y = − 1 x=1,y=-1 x=1,y=1,则
∑ i = 0 n ( − 1 ) i C n i = 0 \sum_{i=0}^n (-1)^iC_n^i = 0 i=0n(1)iCni=0

这四个等式中,等式一的作用就是变换一下指标;等式二的作用主要是拆项递推;等式三主要用来处理与组合数相乘的随指标变化的因子;等式四的作用是提供原始的和式。

应用四个基本恒等式计算组合恒等式的例题

例1 计算 ∑ k = 0 n ( − 1 ) k C n k k + 1 \sum_{k=0}^n (-1)^k\frac{C_n^k}{k+1} k=0n(1)kk+1Cnk
先观察随指标变换的部分, C n k / ( 1 + k ) C_n^k/(1+k) Cnk/(1+k),与组合数相乘的因子是一个分式。等式三简单变形一下, C n k / n = C n − 1 k − 1 / k C_n^k/n = C_{n-1}^{k-1}/k Cnk/n=Cn1k1/k,所以 C n k / ( 1 + k ) = C n + 1 k + 1 / ( n + 1 ) C_n^k/(1+k)=C_{n+1}^{k+1}/(n+1) Cnk/(1+k)=Cn+1k+1/(n+1)
∑ k = 0 n ( − 1 ) k C n k k + 1 = 1 n + 1 ∑ k = 0 n ( − 1 ) k C n + 1 k + 1 \sum_{k=0}^n (-1)^k\frac{C_n^k}{k+1}= \frac{1}{n+1}\sum_{k=0}^n (-1)^kC_{n+1}^{k+1} k=0n(1)kk+1Cnk=n+11k=0n(1)kCn+1k+1

-1的幂作为因子与组合数相乘可以参考等式四的特例二
∑ i = 0 n + 1 ( − 1 ) i C n + 1 i = 0 = ( − 1 ) 0 C n + 1 0 + ∑ i = 1 n + 1 ( − 1 ) i C n + 1 i = 1 − ∑ k = 0 n + 1 ( − 1 ) k C n + 1 k 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值