组合恒等式2 五个基本的组合恒等式 更复杂的技巧与例题

本文深入探讨了如何使用五个基本的组合恒等式来证明其他组合恒等式,包括通过数列的递推关系、证明恒等式为0的方法以及组合数倒数的裂项。举例详细解释了如何运用这些技巧,展示了如何通过恒等式的对称性和递推关系简化证明过程。
摘要由CSDN通过智能技术生成

这一讲继续讨论用五个基本的组合恒等式证明组合恒等式的方法。先复习一下基本恒等式:

等式一 组合数的对称性
C n k = C n n − k C_n^k = C_n^{n-k} Cnk=Cnnk

等式二 杨辉三角
C n k = C n − 1 k + C n − 1 k − 1 C_n^k = C_{n-1}^k + C_{n-1}^{k-1} Cnk=Cn1k+Cn1k1

等式三 多项式系数的唯一性
C n k C k m = C n m C n − m k − m = C n k − m C n − k + m m , m ≤ k ≤ n C_n^kC_k^m = C_n^{m}C_{n-m}^{k-m} = C_n^{k-m}C_{n-k+m}^m,m\le k \le n CnkCkm=CnmCnmkm=CnkmCnk+mm,mkn

特例,如果 m = 1 m=1 m=1
k C n k = n C n − 1 k − 1 kC_n^k = nC_{n-1}^{k-1} kCnk=nCn1k1

等式四 二项式定理
( x + y ) n = ∑ i = 0 n C n i x i y n − i (x+y)^n = \sum_{i=0}^n C_n^ix^iy^{n-i} (x+y)n=i=0nCnixiyni

特例,如果 x = y = 1 x=y=1 x=y=1,则
∑ i = 0 n C n i = 2 n \sum_{i=0}^n C_n^i = 2^n i=0nCni=2n

如果 x = 1 , y = − 1 x=1,y=-1 x=1,y=1,则
∑ i = 0 n ( − 1 ) i C n i = 0 \sum_{i=0}^n (-1)^iC_n^i = 0 i=0n(1)iCni=0

使用两个数列的递推关系证明恒等式

上一讲介绍的例5和例6中,定义待证的和式为一个数列,用等式二裂项之和得到的两项都可以表示为这个数列的某种函数,从而得到这个数列的递推关系(一般是一阶递推)。但是当裂项得到的两项中有一项不能写成数列的函数时,我们可以再定义一个新的数列,然后对新的数列再用等式二裂项(一般可以得到第一个数列的二阶递推)。

例1 ∑ k = 0 n ( − 1 ) k 2 2 n − 2 k C 2 n − k + 1 k = n + 1 \sum_{k=0}^n (-1)^k 2^{2n-2k}C_{2n-k+1}^k = n+1 k=0n(1)k22n2kC2nk+1k=n+1
证明
定义 a n = ∑ k = 0 n ( − 1 ) k 2 2 n − 2 k C 2 n − k + 1 k a_n = \sum_{k=0}^n (-1)^k 2^{2n-2k}C_{2n-k+1}^k an=k=0n(1)k22n2kC2nk+1k,用等式二裂项,
a n = 2 2 n + ∑ k = 1 n ( − 1 ) k 2 2 n − 2 k ( C 2 n − k k + C 2 n − k k − 1 ) = ∑ k = 0 n ( − 1 ) k 2 2 n − 2 k C 2 n − k k − ∑ j = 0 n − 1 ( − 1 ) j 2 2 n − 2 j C 2 ( n − 1 ) − j + 1 j a_n = 2^{2n}+ \sum_{k=1}^{n} (-1)^k 2^{2n-2k}(C_{2n-k}^k + C_{2n-k}^{k-1}) \\ = \sum_{k=0}^{n} (-1)^k 2^{2n-2k}C_{2n-k}^k - \sum_{j=0}^{n-1} (-1)^j 2^{2n-2j} C_{2(n-1)-j+1}^{j} an=22n+k=1n(1)k22n2k(C2nkk+C2nkk1)=k=0n(1)k22n2kC2nkkj=0n1(1)j22n2jC2(n1)j+

### 回答1: 组合数学卢开澄第五版pdf是一本以组合数学为核心内容,涵盖了组合计数、图论、代数计算、概率统计等多个领域的大型数学教材。本书在理论和应用方面均有较为深入的讲解,并且通过生动的例子和图解,将抽象概念形象化展示,使得读者容易理解和掌握知识点。此外,本书也针对不同水平的读者,提供了大量习题和参考答案,是一本非常适合自学和教学使用的教材。 该书的章节由浅入深,分别从组合学的基础概念、排列组合、二项式定理、组合计数问题等开始,逐渐深入到图论、代数计算、概率论等领域。在每一章节中,都有详细的例子和练习题,让读者通过多角度、多样化的方式理解和学习。 整本书的风格简洁明了,逻辑性强,许多定理证明都非常精湛,尤其是书中一些具有经典意义的定理,如Ryser公式、Lovász定理等,都有深入的讲解和证明。此外,书中还融入了一些有趣的历史典故和现实应用,如十二干支、五边形数等,使得阅读过程为轻松愉悦。 总之,组合数学卢开澄第五版pdf可谓是一本良心之作。它不仅提供了详尽的知识点和丰富的习题,还注重实际应用和历史渊源,是组合数学领域的经典教材之一。 ### 回答2: 《组合数学》是一本经典的数学教材,由卢开澄教授编写而成,至今已经出版了五个版本。该教材涵盖了组合数学的基础知识和高级应用,从简单的排列和组合开始,一直到研究图论和多项式计算。其中不仅涉及到各种不同的算法和技巧,还包括了许多实际应用和数学研究的案例。 《组合数学》的第五版是在前四版的基础上进行了新和完善,新增了一些重要的内容和例题,使得其加精彩和实用。比如,该教材加入了新的章节,探讨了组合数学在密码学、组合设计、计算几何和有限域等领域的应用,这些领域是现代计算机科学中非常关键的研究方向。 此外,该书的难度逐渐加深,既包括了基础的概念和定理,也包括了一些复杂的分支和问题。因此,对于不同层次和背景的读者来说,都能够获得很好的学习效果和体验,从而好地掌握组合数学的基础知识和应用技巧。 总之,无论是学生、教师、科学家还是普通读者,都可通过阅读《组合数学》这本书汲取到数学知识和技能,为今后的学习和研究打下基础。而选择卢开澄教授的这本教材,是因为其深厚的数学功底和丰富的教学经验,为读者提供了一份可靠和有趣的数学指南。 ### 回答3: 组合数学是数学中涉及离散对象的一门学科,它涉及组合、排列、选择和分区等不同概念和技术。卢开澄是著名的组合数学家,他在这个领域做出了许多杰出的贡献。 《组合数学》第五版是卢开澄的著作之一,该书涵盖了组合数学的许多经典和重要的主题,例如组合的基础知识、递推关系、生成函数、容斥原理、组合恒等式、拉格朗日反演等。 该书的语言通俗易懂,内容丰富,不仅适合作为大学本科生和研究生的教材,也适合数学工作者和对组合数学感兴趣的人阅读。 除了讲述数学知识,该书还关注了许多具体的问题和应用,例如排队理论、图论、编码理论、离散优化等,在这些领域中,组合数学的方法和技术具有广泛的应用价值。 总之,卢开澄的《组合数学》第五版是一本重要的著作,它对组合数学的理论发展和实际应用都有重大的贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值