UA MATH567 高维统计I 概率不等式3 亚高斯性与亚高斯范数

本文介绍了亚高斯性及其在概率不等式中的应用,详细阐述了亚高斯分布的尾部概率条件、矩条件和矩母函数条件,并定义了亚高斯范数,通过非负性、正齐次性和三角不等式证明其为范数,展示了亚高斯范数在统一参数中的作用。
摘要由CSDN通过智能技术生成

UA MATH567 高维统计I 概率不等式3 亚高斯性与亚高斯范数

概率不等式1中介绍了Hoeffding不等式与Chernoff不等式,这两个不等式的共性是它们的上界关于 t t t的递减阶数都是指数级的,这类上界有非常好的性质,比如尾部概率迅速降低,概率集中在分布中心位置等。但这两个不等式使用条件非常受限,只能适用于Bernoulli分布或者有界的分布,这一讲我们要尝试的是寻找具有尾部概率递减阶数满足 e − c t 2 e^{-ct^2} ect2的所有可能的分布,注意到 e − c t 2 e^{-ct^2} ect2这个形式就是正态的kernel,而正态分布,比如 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1),也满足
P ( ∣ X ∣ ≥ t ) ≤ e − t 2 / 2 P(|X| \ge t) \le e^{-t^2/2} P(Xt)et2/2

所以我们称满足这个条件的分布为亚高斯分布 (sub-Gaussian distribution)。

亚高斯性

亚高斯性 (sub-Gaussian property)

  1. 尾部概率条件: P ( ∣ X ∣ ≥ t ) ≤ 2 exp ⁡ ( − t 2 / K 1 2 ) , ∀ t ≥ 0 P(|X|\ge t) \le 2\exp(-t^2/K_1^2),\forall t\ge 0 P(Xt)2exp(t2/K12),t0
  2. 矩条件: ∥ X ∥ L p ≤ K 2 p , ∀ p ≥ 1 \left\| X \right\|_{L^p} \le K_2\sqrt{p},\forall p \ge 1 XLpK2p ,p1
  3. 矩母函数条件: E e λ 2 X 2 ≤ exp ⁡ ( K 3 2 λ 2 ) , ∀ ∣ λ ∣ ≤ 1 / K 3 Ee^{\lambda^2 X^2} \le \exp(K_3^2\lambda^2),\forall |\lambda| \le 1/K_3 Eeλ2X2exp(K32λ2),λ1/K3
  4. 矩母函数上界: E e X 2 / K 4 2 ≤ 2 Ee^{X^2/K_4^2} \le 2 EeX2/K422
  5. 矩母函数又一个条件: E e λ X ≤ exp ⁡ ( K 5 2 λ 2 ) ,
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值