高维数据分析

本文探讨了高维数据分析中的pHd(Principal Hessian Directions)方法,包括基于响应的pHd和基于残差的pHd。通过标准化处理,使用核矩阵进行降维,并介绍了pHd抽样估计方法,用于估计中心均值子空间SE(Y∣X)。
摘要由CSDN通过智能技术生成

高维数据分析

pHd

论文1 Marginal Coordinate Tests for Central Mean Subspace with Principal
Hessian Directions

做标准化
Z = Σ − 1 / 2 ( X − μ ) Z=\Sigma^{-1/2}(X-\mu) Z=Σ1/2(Xμ)

标准化后, Σ = V a r ( X ) = I p , μ = E ( X ) = 0 , E ( Y ) = 0 \Sigma={\bf Var}(X)=I_p, \mu={\bf E}(X)=0, {\bf E}(Y)=0 Σ=Var(X)=Ip,μ=E(X)=0,E(Y)=0

经典的充分降维本质上来说是一个特征分解问题:
M β i = λ i β i M\beta_i=\lambda_i\beta_i Mβi=λiβi其中, M M M是一个对称核矩阵,根据降维方法不同有不同的表达式,满足特征值 λ 1 ≥ λ 2 ≥ ⋯ ≥ λ d > λ d + 1 = ⋯ = λ p = 0 \lambda_1\geq\lambda_2\geq\cdots\geq\lambda_d>\lambda_{d+1}=\cdots=\lambda_p=0 λ1λ2λd>λd+1==λp=0

SIRSAVE M M M M S I R = V a r [ E ( Z ∣ Y ) ] M_{SIR}={\bf Var}[{\bf E}(Z|Y)] MSIR=Var[E(ZY)] M S A V E = E [ I p − V a r ( Z ∣ Y ) ] M_{SAVE}={\bf E}[I_p-{\bf Var}(Z|Y)] MSAVE=E[IpVar(ZY)]

有两种pHd,一种是基于响应的pHd,表示为y-pHd;另一种是基于残差的pHd,表示为r-pHd。核矩阵为:
M y − p H d = Σ y z z Σ y z z M_{y-pHd}=\Sigma_{yzz}\Sigma_{yzz} M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值