UA MATH567 高维统计I 概率不等式4 亚高斯分布

本文探讨了概率不等式中的亚高斯分布特性,包括尾部概率条件、矩条件和矩母函数条件。通过五个等价条件证明了亚高斯分布的等价性,并给出了正态分布、对称Bernoulli分布和有界分布的亚高斯范数计算示例。
摘要由CSDN通过智能技术生成

UA MATH567 高维统计I 概率不等式4 亚高斯分布

上一讲我们介绍了Hoeffding不等式与Chernoff不等式,这两个不等式的共性是它们的上界关于 t t t的递减阶数都是 e − c t 2 e^{-ct^2} ect2,它们具有非常好的性质,这一讲我们试图将这种尾部概率性质的分布抽象化,并推导出一些更普遍的结果,我们称这些结果为亚高斯性 (sub-Gaussian property) K 1 , ⋯   , K 5 K_1,\cdots,K_5 K1,,K5指的是一些常数。

  1. 尾部概率条件: P ( ∣ X ∣ ≥ t ) ≤ 2 exp ⁡ ( − t 2 / K 1 2 ) , ∀ t ≥ 0 P(|X|\ge t) \le 2\exp(-t^2/K_1^2),\forall t\ge 0 P(Xt)2exp(t2/K12),t0
  2. 矩条件: ∥ X ∥ L p ≤ K 2 p , ∀ p ≥ 1 \left\| X \right\|_{L^p} \le K_2\sqrt{p},\forall p \ge 1 XLpK2p ,p1
  3. 矩母函数条件: E e λ 2 X 2 ≤ exp ⁡ ( K 3 2 λ 2 ) , ∀ ∣ λ ∣ ≤ 1 / K 3 Ee^{\lambda^2 X^2} \le \exp(K_3^2\lambda^2),\forall |\lambda| \le 1/K_3 Eeλ2X2exp(K32λ2),λ1/K3
  4. 矩母函数上界: E e X 2 / K 4 2 ≤ 2 Ee^{X^2/K_4^2} \le 2 EeX2/K422
  5. 矩母函数又一个条件: E e λ X ≤ exp ⁡ ( K 5 2 λ 2 ) , ∀ λ ∈ R , E X = 0 Ee^{\lambda X} \le \exp(K_5^2 \lambda^2),\forall \lambda \in \mathbb{R}, EX=0 EeλXexp(K52λ2),λR,EX=0

并且称满足这五个等价条件中任一条的分布为亚高斯分布 (sub-Gaussian distribution)。下面我们来简单证明一下它们的等价性。另外就是第一个和第四个中的2并不一定是非得是2,是任何一个大于1的常数就可以。


1推2
假设性质1成立,取 K 1 = 1 K_1=1 K1=1(即使 K 1 = ≠ 1 K_1 =\ne 1 K1==1,我们也可以考虑对 X / K 1 X/K_1 X/K1进行分析),因为期望等于生存函数的积分,于是
E ∣ X ∣ p = ∫ 0 ∞ P ( ∣ X ∣ p ≥ u ) d u = ∫ 0 ∞ P ( ∣ X ∣ p ≥ t p ) p t p − 1 d t E|X|^p = \int_0^{\infty}P(|X|^p \ge u)du = \int_0^{\infty}P(|X|^p \ge t^p)pt^{p-1}dt EXp=0P(Xpu)du=0P(Xptp)ptp1dt

第二个等号是用的积分换元, u = t p u=t^p u=tp,根据性质1,
P ( ∣ X ∣ p ≥ t p ) = P ( ∣ X ∣ ≥ t ) ≤ 2 exp ⁡ ( − t 2 ) , ∀ t ≥ 0 P(|X|^p \ge t^p)=P(|X| \ge t) \le 2\exp(-t^2),\forall t \ge 0 P(Xptp)=P(Xt)2exp(t2),t0

于是
∫ 0 ∞ P ( ∣ X ∣ p ≥ t p ) p t p − 1 d t ≤ ∫ 0 ∞ 2 e − t 2 p t p − 1 d t \int_0^{\infty}P(|X|^p \ge t^p)pt^{p-1}dt \le \int_0^{\infty}2e^{-t^2}pt^{p-1}dt 0P(Xptp)ptp1dt02et2ptp1dt

右边这个积分可以通过凑Gamma函数积出来,
∫ 0 ∞ 2 e − t 2 p t p − 1 d t = p ∫ ( t 2 ) p 2 − 1 e − t 2 d t 2 = p Γ ( p / 2 ) \int_0^{\infty}2e^{-t^2}pt^{p-1}dt=p\int (t^2)^{\frac{p}{2}-1}e^{-t^2}dt^2=p\Gamma(p/2) 02et2ptp1dt=p(t2)2p1et2dt2=pΓ(p/2)

根据Gamma函数的上界,当 x ≥ 1 / 2 x \ge 1/2 x1/2时, Γ ( x ) ≤ 3 x x \Gamma(x) \le 3x^x Γ(x)3xx
Γ ( p / 2 ) ≤ 3 p ( p / 2 ) p / 2 \Gamma(p/2) \le 3p(p/2)^{p/2} Γ(p/2)3p(p/2)p/2

因此
∥ X ∥ L p = ( E ∣ X ∣ p ) 1 / p ≤ ( 3 p ) 1 / p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值