Sub-Gaussian随机变量

引言

Sub-Gaussian的分布跟标准高斯分布 N ( 0 , 1 ) \mathcal N (0,1) N(0,1)的性质密切相关,因此在介绍Sub-Gaussian随机变量之前,先简述一下 N ( 0 , 1 ) \mathcal N (0,1) N(0,1)的三个性质,

性质1:随机变量 X ∼ N ( 0 , 1 ) X \sim \mathcal N (0,1) XN(0,1),在 ( t , ∞ ) , t ≥ 1 (t,\infty), t \geq1 (t,),t1的拖尾呈指数形式下降

P { ∣ X ∣ > t } = 2 2 π ∫ t ∞ e − x 2 2 d x ≤ 2 e − t 2 2 (1) \mathbb P\{ |X| > t \} = \frac{2}{\sqrt {2 \pi}} \int_{t}^{\infty} e^{- \frac{x^2}{2}}dx \leq2e^{- \frac {t^2}{2}} \tag{1} P{X>t}=2π 2te2x2dx2e2t2(1)

性质2:随机变量 X ∼ N ( 0 , 1 ) X \sim \mathcal N (0,1) XN(0,1) X X X的绝对任意 p ( p ≥ 1 ) p(p \geq 1) p(p1)阶矩为

( E ∣ X ∣ p ) 1 p = 2 ( Γ ( 1 + p 2 ) Γ ( 1 2 ) ) 1 p = O ( p ) ,   p ≥ 1 (2) (\mathbb E {|X|}^p)^{\frac{1}{p}} = \sqrt 2 {\left ( \frac{\Gamma (\frac {1+p}{2})}{ \Gamma (\frac {1}{2}) } \right )}^{\frac{1}{p}} = O(\sqrt p), \ p \geq 1 \tag{2} (EXp)p1=2 (Γ(21)Γ(21+p))p1=O(p ), p1(2)

性质3:随机变量 X ∼ N ( 0 , 1 ) X \sim \mathcal N (0,1) XN(0,1),其矩母函数

E e x p ( t X ) = e t 2 2 ,   t ∈ R (3) \mathbb E exp(tX)=e^{\frac{t^2}{2}} \tag{3}, \ t \in \R Eexp(tX)=e2t2, tR(3)

对于 X ∼ N ( 0 , 1 ) X \sim \mathcal N (0,1) XN(0,1),上面三个性质其实是等价的。而Sub-Gaussian的定义与性质1-3是紧密相连的,那些满足性质1-3的随机变量,我们就将其成为是Sub-Gaussian随机变量,下面将做更具体的描述。

Sub-Gaussian等价的几个性质


这里给出的性质1,2,4和引言部分所述的性质1-3是对应起来的,分别对应拖尾、任意阶矩和矩母函数。下面将对这四个性质的等价性做证明。

(1)根据1,证明2
在这里插入图片描述
(2)根据2,证明3
在这里插入图片描述
(3)根据3,证明1
该部分证明需要用到Markov不等式,如下

Markov不等式
若随机变量 X X X只取非负值,则对 ∀ a > 0 \forall a >0 a>0

P ( X ≥ a ) ≤ E [ X ] a \mathbb P (X\geq a) \leq \frac{\mathbb E[X]}{a} P(Xa)aE[X]

证明:令 Y a = a ⋅ I ( X ≥ a ) Y_a=a \cdot \mathbb I(X \geq a) Ya=aI(Xa),显然有 E [ Y a ] ≤ E [ X ] \mathbb E[Y_a] \leq \mathbb E[X] E[Ya]E[X],又

E [ Y a ] = a ⋅ P ( X ≥ a ) \mathbb E[Y_a] = a \cdot \mathbb P (X \geq a) E[Ya]=aP(Xa)

证毕

在这里插入图片描述
(4)根据2,证明4
在这里插入图片描述
(5)根据4,证明1
在这里插入图片描述

Sub-Gaussian随机变量的定义

定义1:Sub-Gaussian随机变量
对于一个随机变量 X X X,只要 X X X满足第二部分的前三个等价性质(拖尾性、绝对任意阶矩性、超指数阶矩性),那么就称 X X X为Sub-Gaussian随机变量。并且指定 ∥ X ∥ ψ 2 {\Vert X \Vert}_{\psi_2} Xψ2 X X X的sub-Gaussian范数,满足

∥ X ∥ ψ 2 = sup ⁡ p ≥ 1    p − 1 2 ( E ∣ X ∣ p ) 1 p {\Vert X \Vert}_{\psi_2}=\sup_{p \geq 1} \ \ p^{- \frac {1}{2}} (\mathbb E|X|^p)^{\frac{1}{p}} Xψ2=p1sup  p21(EXp)p1

其实 ∥ X ∥ ψ 2 {\Vert X \Vert}_{\psi_2} Xψ2与第二部分中性质2(绝对任意阶矩性)里的 K 2 K_2 K2可取的最小值是相等的。

对于任意的Sub-Gaussian随机变量 X X X,一定满足
在这里插入图片描述

Sub-Gaussian随机变量的三个例子

(1)高斯随机变量
当均值为0时,sub-Gaussian范数满足:

∥ X ∥ ψ 2 ≤ C σ {\Vert X \Vert}_{\psi_2} \leq C \sigma Xψ2Cσ

(2)伯努利随机变量
当伯努利随机变量是对称时,即 P ( X = − 1 ) = P ( X = 1 ) = 1 2 \mathbb P(X=-1)=\mathbb P(X=1)=\frac{1}{2} P(X=1)=P(X=1)=21,sub-Gaussian范数满足:

∥ X ∥ ψ 2 = 1 {\Vert X \Vert}_{\psi_2} =1 Xψ2=1

(3)有界的随机变量

∃ M > 0 , ∣ X ∣ ≤ M \exist M >0, |X| \leq M M>0,XM

sub-Gaussian范数满足:

∥ X ∥ ψ 2 ≤ M {\Vert X \Vert}_{\psi_2} \leq M Xψ2M

更紧的可以表示为

∥ X ∥ ψ 2 ≤ ∥ X ∥ ∞ {\Vert X \Vert}_{\psi_2} \leq {\Vert X \Vert}_{\infty} Xψ2X

Sub-Gaussian的近似旋转不变性

关于旋转不变性(Rotation-Invariant-Distribution),先考虑最基本的零均值高斯随机变量 X i X_i Xi,显然 ∑ i X i \sum_{i}X_i iXi的均值为0,旋转不变性告诉我们 V a r ( ∑ i X i ) = ∑ i V a r ( X i ) Var(\sum_{i}X_i)=\sum_{i}Var(X_i) Var(iXi)=iVar(Xi),那么sub-Gaussian随机变量是否有类似的性质呢?答案是有的,但是只满足近似旋转不变性,如下

Sub-Gaussian的近似旋转不变性
考虑有限个零均值的sub-Gaussian随机变量 X i X_i Xi,那么 ∑ i X i \sum_{i}X_i iXi的均值为0,并且

∥ ∑ i X i ∥ ψ 2 2 ≤ C ⋅ ∑ i ∥ X i ∥ ψ 2 2 {\Big \Vert {\sum_{i}X_i} \Big \Vert}_{\psi_2}^2 \leq C \cdot \sum_{i} {\Vert X_i\Vert}_{\psi_2}^2 iXiψ22CiXiψ22

其中 C C C是常数。证明过程如下

在这里插入图片描述

总结

标准的高斯随机变量一定满足引言部分的性质1-3(对应着拖尾、任意阶矩和矩母函数),而sub-Gaussian随机变量就是由这三个性质延伸的,并且又更一般地在第二部分(Sub-Gaussian等价的几个性质)重述了sub-Gaussian满足的几个性质,这些性质是等价的,sub-Gaussian会比Gaussian的范围要广一些,因为Gaussian一定满足这些性质,但是满足这些性质的随机变量不一定是Gaussian,比如伯努利随机变量和有界的随机变量,他们都是sub-Gaussian随机变量。

  • 16
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值