UA MATH563 概率论的数学基础 鞅论初步3 条件期望的性质
鞅论初步的第一讲给出了条件期望的定义,第二讲推导了二元随机变量根据定义进行计算的公式,这一讲介绍一些条件期望的性质。
假设 X , Y X,Y X,Y是 ( Ω , B , P ) → ( R , B ( R ) ) (\Omega,\mathcal{B},P) \to (\mathbb{R},\mathcal{B}(\mathbb{R})) (Ω,B,P)→(R,B(R))的随机变量, F \mathcal{F} F是 B \mathcal{B} B的一个子 σ \sigma σ-代数。回顾一下条件期望的公理化定义: E [ X ∣ F ] E[X|\mathcal{F}] E[X∣F]满足
- E [ X ∣ F ] E[X|\mathcal{F}] E[X∣F]是 F \mathcal{F} F-可测的;
- ∀ A ∈ F \forall A \in \mathcal{F} ∀A∈F, ∫ A X d P = ∫ A E [ X ∣ F ] d P \int_A XdP = \int_A E[X|\mathcal{F}] dP ∫AXdP=∫AE[X∣F]dP
因此证明某个表达式是另一个表达式的条件期望,只需要验证这个定义即可。下面我们陈述条件期望的性质,没有证明的性质都可以通过直接验证定义得到,读者可以自行尝试。
性质一: Linearity
E [ a X + b Y ∣ F ] = a E [ X ∣ F ] + b E [ Y ∣ F ] , ∀ a , b ∈ R E[aX+bY|\mathcal{F}]=aE[X|\mathcal{F}]+bE[Y|\mathcal{F}],\forall a,b \in \mathbb{R} E[aX+bY∣F]=aE[X∣F]+bE[Y∣F],∀a,b∈R
证明
记 W = a E [ X ∣ F ] + b E [ Y ∣ F ] W=aE[X|\mathcal{F}]+bE[Y|\mathcal{F}] W=aE[X∣F]+bE[Y∣F],因为 E [ X ∣ F ] , E [ Y ∣ F ] E[X|\mathcal{F}],E[Y|\mathcal{F}] E[X∣F],E[Y∣F]都是 F \mathcal{F} F-可测的,所以 W W W是 F \mathcal{F} F-可测的。
计算 ∀ A ∈ F \forall A \in \mathcal{F} ∀A∈F
∫ A W d P = ∫ A ( a E [ X ∣ F ] + b E [ Y ∣ F ] ) d P = a ∫ A E [ X ∣ F ] d P + b ∫ A E [ Y ∣ F ] d P = a ∫ X d P + b ∫ Y d P = ∫ A ( a X + b Y ) d P \int _A W dP = \int _A (aE[X|\mathcal{F}]+bE[Y|\mathcal{F}])dP \\ = a \int _AE[X|\mathcal{F}]dP + b \int_A E[Y|\mathcal{F}]dP \\ = a\int X dP + b \int Y dP=\int_A(aX+bY)dP ∫AWdP=∫A(aE[X∣F]+bE[Y∣F])dP=a∫AE[X∣F]dP+b∫AE[Y∣F]dP=a∫XdP+b∫YdP=∫A(aX+bY)dP
因此 W W W是 a X + b Y aX+bY aX+bY关于 F \mathcal{F} F的条件期望。
性质二:Monotonicity
X ≤ Y a . s . ⇒ E [ X ∣ F ] ≤ E [ Y ∣ F ] X \le Y\ a.s. \Rightarrow E[X|\mathcal{F}] \le E[Y|\mathcal{F}] X≤Y a.s.⇒E[X∣F]≤E[Y∣F]
性质三:Monotone Convergence
X n ≥ 0 , a . s . ∀ n , X n ↑ X , a . s . , E ∣ X ∣ < ∞ ⇒ E [ X n ∣ F ] ↑ E [ X ∣ F ] X_n \ge 0,a.s.\forall n,X_n \uparrow X,a.s.,E|X|<\infty \Rightarrow E[X_n|\mathcal{F}]\uparrow E[X|\mathcal{F}] Xn≥0,a.s.∀n,Xn↑X,a.s.,E∣X∣<∞⇒E[Xn∣F]↑E[X∣F]
这里