UA MATH563 概率论的数学基础 鞅论初步3 条件期望的性质

本文介绍了概率论中条件期望的几个重要性质,包括线性性、单调性、单调收敛性、Jensen不等式、收缩性质、塔楼性质和投影性质,并通过证明和例子阐述了这些性质的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA MATH563 概率论的数学基础 鞅论初步3 条件期望的性质

鞅论初步的第一讲给出了条件期望的定义,第二讲推导了二元随机变量根据定义进行计算的公式,这一讲介绍一些条件期望的性质。

假设 X , Y X,Y X,Y ( Ω , B , P ) → ( R , B ( R ) ) (\Omega,\mathcal{B},P) \to (\mathbb{R},\mathcal{B}(\mathbb{R})) (Ω,B,P)(R,B(R))的随机变量, F \mathcal{F} F B \mathcal{B} B的一个子 σ \sigma σ-代数。回顾一下条件期望的公理化定义: E [ X ∣ F ] E[X|\mathcal{F}] E[XF]满足

  1. E [ X ∣ F ] E[X|\mathcal{F}] E[XF] F \mathcal{F} F-可测的;
  2. ∀ A ∈ F \forall A \in \mathcal{F} AF, ∫ A X d P = ∫ A E [ X ∣ F ] d P \int_A XdP = \int_A E[X|\mathcal{F}] dP AXdP=AE[XF]dP

因此证明某个表达式是另一个表达式的条件期望,只需要验证这个定义即可。下面我们陈述条件期望的性质,没有证明的性质都可以通过直接验证定义得到,读者可以自行尝试。


性质一: Linearity
E [ a X + b Y ∣ F ] = a E [ X ∣ F ] + b E [ Y ∣ F ] , ∀ a , b ∈ R E[aX+bY|\mathcal{F}]=aE[X|\mathcal{F}]+bE[Y|\mathcal{F}],\forall a,b \in \mathbb{R} E[aX+bYF]=aE[XF]+bE[YF],a,bR

证明
W = a E [ X ∣ F ] + b E [ Y ∣ F ] W=aE[X|\mathcal{F}]+bE[Y|\mathcal{F}] W=aE[XF]+bE[YF],因为 E [ X ∣ F ] , E [ Y ∣ F ] E[X|\mathcal{F}],E[Y|\mathcal{F}] E[XF],E[YF]都是 F \mathcal{F} F-可测的,所以 W W W F \mathcal{F} F-可测的。

计算 ∀ A ∈ F \forall A \in \mathcal{F} AF
∫ A W d P = ∫ A ( a E [ X ∣ F ] + b E [ Y ∣ F ] ) d P = a ∫ A E [ X ∣ F ] d P + b ∫ A E [ Y ∣ F ] d P = a ∫ X d P + b ∫ Y d P = ∫ A ( a X + b Y ) d P \int _A W dP = \int _A (aE[X|\mathcal{F}]+bE[Y|\mathcal{F}])dP \\ = a \int _AE[X|\mathcal{F}]dP + b \int_A E[Y|\mathcal{F}]dP \\ = a\int X dP + b \int Y dP=\int_A(aX+bY)dP AWdP=A(aE[XF]+bE[YF])dP=aAE[XF]dP+bAE[YF]dP=aXdP+bYdP=A(aX+bY)dP

因此 W W W a X + b Y aX+bY aX+bY关于 F \mathcal{F} F的条件期望。


性质二:Monotonicity
X ≤ Y   a . s . ⇒ E [ X ∣ F ] ≤ E [ Y ∣ F ] X \le Y\ a.s. \Rightarrow E[X|\mathcal{F}] \le E[Y|\mathcal{F}] XY a.s.E[XF]E[YF]


性质三:Monotone Convergence
X n ≥ 0 , a . s . ∀ n , X n ↑ X , a . s . , E ∣ X ∣ < ∞ ⇒ E [ X n ∣ F ] ↑ E [ X ∣ F ] X_n \ge 0,a.s.\forall n,X_n \uparrow X,a.s.,E|X|<\infty \Rightarrow E[X_n|\mathcal{F}]\uparrow E[X|\mathcal{F}] Xn0,a.s.n,XnX,a.s.,EX<E[XnF]E[XF]

这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值