初等数学O 集合论基础 第三节 序关系
这一讲的目标是在非空集合中定义序关系,读者可以把序关系理解为大于小于关系的抽象化与公理化。我们总是试图把一些耳熟能详的结果公理化,是因为这些结果非常实用,公理化之后可以在更多场景中应用这些结果。把大于小于抽象为序关系之后,只要在某个集合上我们能够定义一个序关系,这个集合中的元素也就有了像数字一样的大小关系,我们就能比较任意两个元素的大小、找出最大值/最小值。
定义0.10 序关系
假设
X
X
X是一个非空集合,用
≤
\le
≤表示
X
X
X中任意两个元素的关系,如果
∀
x
,
y
,
z
∈
X
\forall x,y,z \in X
∀x,y,z∈X,
- x ≤ x x \le x x≤x (自反性,reflexivity)
- x ≤ y , y ≤ z ⇒ x ≤ z x \le y,y \le z \Rightarrow x \le z x≤y,y≤z⇒x≤z (传递性,transitivity)
就称 ≤ \le ≤是一个先序关系(preorder),如果它还满足
- x ≤ y , y ≤ x ⇒ x = y x \le y, y \le x \Rightarrow x=y x≤y,y≤x⇒x=y (反对称, antisymmetric)
就称 ≤ \le ≤是一个偏序关系(partial order),并称配备有偏序的集合 X X X为偏序集;如果一个偏序还满足
- x ≤ y x \le y x≤y, y ≤ x y \le x y≤x中至少有一个成立 (完全性, totality)
就称 ≤ \le ≤是一个全序关系(total order)或者线性序关系 (linear order),并称配备有偏序的集合 X X X为全序集。读者可以自行验证,实数的大小关系是一个全序。
例0.4 假设 X X X是一个非空集合, P ( X ) \mathcal{P}(X) P(X)是它的幂集, ⊆ \subseteq ⊆是幂集上的全序吗?
证
i)验证自反性,
∀
E
∈
P
(
X
)
\forall E \in \mathcal{P}(X)
∀E∈P(X),
E
⊆
E
E \subseteq E
E⊆E显然成立;
ii)验证传递性,
∀
A
,
B
,
C
∈
P
(
X
)
\forall A,B,C \in \mathcal{P}(X)
∀A,B,C∈P(X),
A
⊆
B
,
B
⊆
C
A \subseteq B,B \subseteq C
A⊆B,B⊆C,显然可得
A
⊆
C
A \subseteq C
A⊆C。一种更严谨的叙述是借助验证包含关系的操作,
∀
a
∈
A
\forall a \in A
∀a∈A,
A
⊆
B
A \subseteq B
A⊆B说明
a
∈
B
a \in B
a∈B,
B
⊆
C
B \subseteq C
B⊆C说明
a
∈
C
a \in C
a∈C,因此
A
⊆
C
A \subseteq C
A⊆C;
iii) 验证反对称,
∀
E
,
F
∈
P
(
X
)
\forall E,F \in \mathcal{P}(X)
∀E,F∈P(X),
E
⊆
F
,
F
⊆
E
E \subseteq F,F \subseteq E
E⊆F,F⊆E,根据集合相等的定义,
E
=
F
E=F
E=F
iv)验证完全性。事实上完全性不成立,显然两个集合不一定总是包含与被包含的关系,也可以是相交、不相交的关系,比如
X
=
{
1
,
2
,
3
,
4
}
X=\{1,2,3,4\}
X={1,2,3,4},
E
=
{
1
,
2
}
E = \{1,2\}
E={1,2},
F
=
{
1
,
3
}
F = \{1,3\}
F={1,3},显然
E
,
F
E,F
E,F没有包含关系,所以完全性不成立。
综上, ⊆ \subseteq ⊆不是幂集上的全序,但它是一个偏序。
例0.5 假设 X X X是一个非空有限集合, P ( X ) \mathcal{P}(X) P(X)是它的幂集,对幂集中的任意两个集合 E , F E,F E,F,基于集合的势定义 E ≲ F E \lesssim F E≲F如果 ∣ E ∣ ≤ ∣ F ∣ |E| \le |F| ∣E∣≤∣F∣, ≲ \lesssim ≲是幂集上的全序吗?
证
i)验证自反性,
∀
E
∈
P
(
X
)
\forall E \in \mathcal{P}(X)
∀E∈P(X),
∣
E
∣
≤
∣
E
∣
|E| \le |E|
∣E∣≤∣E∣显然成立,所以
E
≲
E
E \lesssim E
E≲E;
ii)验证传递性,
∀
A
,
B
,
C
∈
P
(
X
)
\forall A,B,C \in \mathcal{P}(X)
∀A,B,C∈P(X),
A
≲
B
,
B
≲
C
A \lesssim B,B \lesssim C
A≲B,B≲C,说明
∣
A
∣
≤
∣
B
∣
|A| \le |B|
∣A∣≤∣B∣,
∣
B
∣
≤
∣
C
∣
|B| \le |C|
∣B∣≤∣C∣,根据数的大小关系的传递性,
∣
A
∣
≤
∣
C
∣
|A| \le |C|
∣A∣≤∣C∣,因此
A
≲
C
A \lesssim C
A≲C ;
iii) 验证反对称,
∀
E
,
F
∈
P
(
X
)
\forall E,F \in \mathcal{P}(X)
∀E,F∈P(X),
E
≲
F
,
F
≲
E
E \lesssim F,F \lesssim E
E≲F,F≲E,这说明,
∣
E
∣
≤
∣
F
∣
|E|\le |F|
∣E∣≤∣F∣,
∣
F
∣
≤
∣
E
∣
|F| \le |E|
∣F∣≤∣E∣, 根据Schroeder-Bernstein定理(第二讲定理0.4),
∣
E
∣
=
∣
F
∣
|E|=|F|
∣E∣=∣F∣,因此反对称成立
iv)验证完全性,要说明
∀
E
,
F
∈
P
(
X
)
\forall E,F \in \mathcal{P}(X)
∀E,F∈P(X),
E
≲
F
,
F
≲
E
E \lesssim F,F \lesssim E
E≲F,F≲E必有一个成立,就要说明
∣
E
∣
≤
∣
F
∣
|E| \le |F|
∣E∣≤∣F∣与
∣
F
∣
≤
∣
E
∣
|F| \le |E|
∣F∣≤∣E∣必有一个成立,这正好是第二讲定理0.3的内容,既然我们已经定义了序关系,现在我们可以完成定理0.3的证明了。
假设
J
\mathcal{J}
J表示所有从
E
E
E的某个子集到
F
F
F的某个子集的单射的集合,即
J
=
{
f
:
A
→
B
∣
A
∈
P
(
X
)
,
B
∈
P
(
F
)
}
\mathcal{J}=\{f:A \to B|A \in \mathcal{P}(X),B \in \mathcal{P}(F)\}
J={f:A→B∣A∈P(X),B∈P(F)}
我们可以在 J \mathcal{J} J上定义偏序关系。 ∀ f 1 : A 1 → B 1 , f 2 : A 2 → B 2 ∈ J \forall f_1:A_1 \to B_1,f_2:A_2 \to B_2 \in \mathcal{J} ∀f1:A1→B1,f2:A2→B2∈J, 如果 A 1 ⊆ A 2 , B 1 ⊂ B 2 A_1 \subseteq A_2,B_1 \subset B_2 A1⊆A2,B1⊂B2,就称 f 1 ≲ f 2 f_1 \lesssim f_2 f1≲f2。根据例0.4,我们不难验证 ( J , ≲ ) (\mathcal{J},\lesssim) (J,≲)是一个偏序集。显然它的所有子集都有一个上界,也就是 E → F E \to F E→F的双射,根据下文定理0.7中的Zorn引理, J \mathcal{J} J存在一个最大元,记为 f : A → B , A ∈ P ( X ) , B ∈ P ( X ) f:A \to B,A \in \mathcal{P}(X),B \in \mathcal{P}(X) f:A→B,A∈P(X),B∈P(X)。下面我们做一个递归:如果 x 0 ∈ E ∖ A x_0 \in E \setminus A x0∈E∖A, 我们可以找一个 y 0 ∈ F ∖ B y_0 \in F \setminus B y0∈F∖B,通过定义 f ( x 0 ) = y 0 f(x_0)=y_0 f(x0)=y0扩充单射 f f f,然后将 A ∪ { x 0 } A\cup \{x_0\} A∪{x0}定义为新的 A A A, B ∪ { y 0 } B \cup \{y_0\} B∪{y0}定义为新的 B B B。重复这个操作,直到 A = X A=X A=X或者 B = Y B=Y B=Y,因此 ∣ E ∣ ≤ ∣ F ∣ |E| \le |F| ∣E∣≤∣F∣与 ∣ F ∣ ≤ ∣ E ∣ |F| \le |E| ∣F∣≤∣E∣必有一个成立。
综上, ≲ \lesssim ≲是幂集上的全序。
例0.6 在二维欧氏空间 R 2 = { ( x , y ) : x ∈ R , y ∈ R } \mathbb{R}^2=\{(x,y):x \in \mathbb{R}, y \in \mathbb{R}\} R2={(x,y):x∈R,y∈R}中,验证下面的关系是不是全序:
- ( x 1 , y 1 ) ≤ 1 ( x 2 , y 2 ) (x_1,y_1) \le_1 (x_2,y_2) (x1,y1)≤1(x2,y2)如果 x 1 ≤ x 2 x_1 \le x_2 x1≤x2
- ( x 1 , y 1 ) ≤ 2 ( x 2 , y 2 ) (x_1,y_1) \le_2 (x_2,y_2) (x1,y1)≤2(x2,y2)如果 ∣ x 1 ∣ + ∣ y 1 ∣ ≤ ∣ x 2 ∣ + ∣ y 2 ∣ |x_1|+|y_1| \le |x_2|+|y_2| ∣x1∣+∣y1∣≤∣x2∣+∣y2∣
- ( x 1 , y 1 ) ≤ 3 ( x 2 , y 2 ) (x_1,y_1) \le_3 (x_2,y_2) (x1,y1)≤3(x2,y2)如果 ∣ x 1 ∣ 2 + ∣ y 1 ∣ 2 ≤ ∣ x 2 ∣ 2 + ∣ y 2 ∣ 2 |x_1|^2+|y_1|^2 \le |x_2|^2+|y_2|^2 ∣x1∣2+∣y1∣2≤∣x2∣2+∣y2∣2
这个例题比较容易,读者可以自行验证这三个关系都是全序。
评注0.4
- 说明一个关系是序关系只需要逐条验证定义即可,有些关系验证起来比较复杂,比如例0.5,但有些序关系非常明显;
- 例0.6的几个结果说明在同一个集合上可能存在多种不同的全序,在不同的全序下元素的大小关系可能是不一样的,比如 ( 2 , 0 ) (2,0) (2,0)与 ( 1 , 4 ) (1,4) (1,4)相比,在 ≤ 1 \le_1 ≤1下前者更大,在 ≤ 2 \le_2 ≤2与 ≤ 3 \le_3 ≤3下后者更大,所以具体选用什么序关系取决于我们想解决的问题。比如在二维欧氏空间中,我们想在圆 ( x − 2 ) 2 + ( y − 2 ) 2 = 1 (x-2)^2+(y-2)^2=1 (x−2)2+(y−2)2=1中找一个距离原点最近的点,就可以在圆上定义序关系 ≤ 3 \le_3 ≤3,找出最小元即可。再比如我们在比较两种方案时,方案一需要花掉90%的预算但能完成100%的工作,方案二只需要花掉70%的预算但也只能完成60%的工作,因为两种方案都没有花完预算,所以我们可以把预算作为 y y y,工作进度作为 x x x,用序关系 ≤ 1 \le_1 ≤1来选出一个最优方案。
基于序关系可以定义最大元、最小元:
定义0.11 最大元与最小元
假设
(
X
,
≤
)
(X,\le)
(X,≤)是一个全序集,
- 最大元: ∃ M ∈ X , ∀ x ∈ X , x ≤ M \exists M \in X, \forall x \in X, x \le M ∃M∈X,∀x∈X,x≤M
- 最小元: ∃ m ∈ X , ∀ x ∈ X , m ≤ x \exists m \in X, \forall x \in X, m \le x ∃m∈X,∀x∈X,m≤x
定义0.12 良序
如果
(
X
,
≤
)
(X,\le)
(X,≤)的每个非空子集都存在最小元,就称
(
X
,
≤
)
(X,\le)
(X,≤)是良序集(well-ordered set),称
≤
\le
≤是良序(well ordering)。
定理0.7 集合的最大元
- Axiom of Choice(by Zermelo 1904):一列非空集合的笛卡尔积也是非空集合;
- Zorn’s Lemma:如果偏序集的所有全序子集都有一个上界,那么这个偏序集有最大元
- Hausdorff Maximal Principle:每个偏序集都有一个最大的全序子集
- Well Ordering Principle (by Cantor 1883):任意非空集合上都可以定义一个良序使之成为良序集
评注0.5
说明:选择公理叙述中的笛卡尔积我们还没介绍到,所以等介绍了笛卡尔集合之后再讨论选择公理的内涵。
第一部分:Hausdorff Maximal Principle与Zorn引理的等价性
Hausdorff Maximal Principle说的是每个偏序集都有一个最大的全序子集,考虑偏序集 ( X , ≤ ) (X,\le) (X,≤),则 ∃ E ⊂ X \exists E \subset X ∃E⊂X, ( E , ≤ ) (E,\le) (E,≤)是全序集,并且 E E E包含 X X X其他所有全序子集。按Zorn引理的叙述,偏序集的所有全序子集都有一个上界,则 ( E , ≤ ) (E,\le) (E,≤)存在一个上界,记这个上界为 M M M,则 M M M是 X X X的最大元(如果 M M M不是最大元,可以把 M M M纳入 E E E中,定义 E ′ = E ∪ { M } E'=E\cup\{M\} E′=E∪{M},验证 E ′ E' E′为全序集,则 E ′ ⊃ E E'\supset E E′⊃E,这与 E E E是最大的全序子集矛盾)。
当然Zorn引理也可以导出Hausdorff Maximal Principle,记 C \mathcal{C} C是 ( X , ≤ ) (X,\le) (X,≤)所有全序子集的集族,则 ( C , ⊂ ) (\mathcal{C},\subset) (C,⊂)是一个偏序集,对这个偏序集应用Zorn引理,显然它存在一个最大元,这个最大元就是 ( X , ≤ ) (X,\le) (X,≤)最大的全序子集。
第二部分:Zorn引理推出良序原理
使用Zorn引理可以证明良序原则。我们需要引入一个工具:良序集的扩张。假设 ( A , ≤ ) (A,\le) (A,≤)是一个良序集, A ⊂ B A \subset B A⊂B,定义关系 ≤ B \le_B ≤B使得:
- ( A , ≤ ) (A,\le) (A,≤)与 ( A , ≤ B ) (A,\le_B) (A,≤B)等价;
- ∀ x ∈ B ∖ A \forall x \in B\setminus A ∀x∈B∖A, y ≤ B x , ∀ y ∈ A y \le_B x, \forall y \in A y≤Bx,∀y∈A
则 ( B , ≤ B ) (B,\le_B) (B,≤B)也是一个良序集,称之为良序集 ( A , ≤ ) (A,\le) (A,≤)的扩张。
我们再定义一个良序之间的序关系,用 R R R表示,因为 ( B , ≤ B ) (B,\le_B) (B,≤B)是 ( A , ≤ ) (A,\le) (A,≤)的扩张,这种序关系记为 ( A , ≤ ) R ( B , ≤ B ) (A,\le)R(B,\le_B) (A,≤)R(B,≤B)。用 C \mathcal{C} C表示偏序集 ( X , ≤ ) (X,\le) (X,≤)所有良序子集的集族,则 ( C , R ) (\mathcal{C},R) (C,R)是偏序集,根据Zorn引理,它存在一个最大元,接下来我们可以把最大元扩展到 X X X上,使 X X X被良序化。
第三部分:上面四个结论等价
事实上良序原则可以导出选择公理,选择公理也可以导出Zorn引理,因此这四个结果是全部等价的,当我们接受了选择公理之后,我们就可以基于这四个结果对集合进行分析。