初等数学O 集合论基础 第三节 序关系

初等数学O 集合论基础 第三节 序关系

这一讲的目标是在非空集合中定义序关系,读者可以把序关系理解为大于小于关系的抽象化与公理化。我们总是试图把一些耳熟能详的结果公理化,是因为这些结果非常实用,公理化之后可以在更多场景中应用这些结果。把大于小于抽象为序关系之后,只要在某个集合上我们能够定义一个序关系,这个集合中的元素也就有了像数字一样的大小关系,我们就能比较任意两个元素的大小、找出最大值/最小值。


定义0.10 序关系
假设 X X X是一个非空集合,用 ≤ \le 表示 X X X中任意两个元素的关系,如果 ∀ x , y , z ∈ X \forall x,y,z \in X x,y,zX

  1. x ≤ x x \le x xx (自反性,reflexivity)
  2. x ≤ y , y ≤ z ⇒ x ≤ z x \le y,y \le z \Rightarrow x \le z xy,yzxz (传递性,transitivity)

就称 ≤ \le 是一个先序关系(preorder),如果它还满足

  1. x ≤ y , y ≤ x ⇒ x = y x \le y, y \le x \Rightarrow x=y xy,yxx=y (反对称, antisymmetric)

就称 ≤ \le 是一个偏序关系(partial order),并称配备有偏序的集合 X X X偏序集;如果一个偏序还满足

  1. x ≤ y x \le y xy, y ≤ x y \le x yx中至少有一个成立 (完全性, totality)

就称 ≤ \le 是一个全序关系(total order)或者线性序关系 (linear order),并称配备有偏序的集合 X X X全序集。读者可以自行验证,实数的大小关系是一个全序。


例0.4 假设 X X X是一个非空集合, P ( X ) \mathcal{P}(X) P(X)是它的幂集, ⊆ \subseteq 是幂集上的全序吗?


i)验证自反性, ∀ E ∈ P ( X ) \forall E \in \mathcal{P}(X) EP(X), E ⊆ E E \subseteq E EE显然成立;
ii)验证传递性, ∀ A , B , C ∈ P ( X ) \forall A,B,C \in \mathcal{P}(X) A,B,CP(X), A ⊆ B , B ⊆ C A \subseteq B,B \subseteq C AB,BC,显然可得 A ⊆ C A \subseteq C AC。一种更严谨的叙述是借助验证包含关系的操作, ∀ a ∈ A \forall a \in A aA, A ⊆ B A \subseteq B AB说明 a ∈ B a \in B aB B ⊆ C B \subseteq C BC说明 a ∈ C a \in C aC,因此 A ⊆ C A \subseteq C AC
iii) 验证反对称, ∀ E , F ∈ P ( X ) \forall E,F \in \mathcal{P}(X) E,FP(X), E ⊆ F , F ⊆ E E \subseteq F,F \subseteq E EF,FE,根据集合相等的定义, E = F E=F E=F
iv)验证完全性。事实上完全性不成立,显然两个集合不一定总是包含与被包含的关系,也可以是相交、不相交的关系,比如 X = { 1 , 2 , 3 , 4 } X=\{1,2,3,4\} X={1,2,3,4}, E = { 1 , 2 } E = \{1,2\} E={1,2}, F = { 1 , 3 } F = \{1,3\} F={1,3},显然 E , F E,F E,F没有包含关系,所以完全性不成立。

综上, ⊆ \subseteq 不是幂集上的全序,但它是一个偏序。

例0.5 假设 X X X是一个非空有限集合, P ( X ) \mathcal{P}(X) P(X)是它的幂集,对幂集中的任意两个集合 E , F E,F E,F,基于集合的势定义 E ≲ F E \lesssim F EF如果 ∣ E ∣ ≤ ∣ F ∣ |E| \le |F| EF ≲ \lesssim 是幂集上的全序吗?


i)验证自反性, ∀ E ∈ P ( X ) \forall E \in \mathcal{P}(X) EP(X), ∣ E ∣ ≤ ∣ E ∣ |E| \le |E| EE显然成立,所以 E ≲ E E \lesssim E EE
ii)验证传递性, ∀ A , B , C ∈ P ( X ) \forall A,B,C \in \mathcal{P}(X) A,B,CP(X), A ≲ B , B ≲ C A \lesssim B,B \lesssim C AB,BC,说明 ∣ A ∣ ≤ ∣ B ∣ |A| \le |B| AB, ∣ B ∣ ≤ ∣ C ∣ |B| \le |C| BC,根据数的大小关系的传递性, ∣ A ∣ ≤ ∣ C ∣ |A| \le |C| AC,因此 A ≲ C A \lesssim C AC
iii) 验证反对称, ∀ E , F ∈ P ( X ) \forall E,F \in \mathcal{P}(X) E,FP(X), E ≲ F , F ≲ E E \lesssim F,F \lesssim E EF,FE,这说明, ∣ E ∣ ≤ ∣ F ∣ |E|\le |F| EF, ∣ F ∣ ≤ ∣ E ∣ |F| \le |E| FE, 根据Schroeder-Bernstein定理(第二讲定理0.4), ∣ E ∣ = ∣ F ∣ |E|=|F| E=F,因此反对称成立
iv)验证完全性,要说明 ∀ E , F ∈ P ( X ) \forall E,F \in \mathcal{P}(X) E,FP(X), E ≲ F , F ≲ E E \lesssim F,F \lesssim E EF,FE必有一个成立,就要说明 ∣ E ∣ ≤ ∣ F ∣ |E| \le |F| EF ∣ F ∣ ≤ ∣ E ∣ |F| \le |E| FE必有一个成立,这正好是第二讲定理0.3的内容,既然我们已经定义了序关系,现在我们可以完成定理0.3的证明了。

假设 J \mathcal{J} J表示所有从 E E E的某个子集到 F F F的某个子集的单射的集合,即
J = { f : A → B ∣ A ∈ P ( X ) , B ∈ P ( F ) } \mathcal{J}=\{f:A \to B|A \in \mathcal{P}(X),B \in \mathcal{P}(F)\} J={f:ABAP(X),BP(F)}

我们可以在 J \mathcal{J} J上定义偏序关系。 ∀ f 1 : A 1 → B 1 , f 2 : A 2 → B 2 ∈ J \forall f_1:A_1 \to B_1,f_2:A_2 \to B_2 \in \mathcal{J} f1:A1B1,f2:A2B2J, 如果 A 1 ⊆ A 2 , B 1 ⊂ B 2 A_1 \subseteq A_2,B_1 \subset B_2 A1A2,B1B2,就称 f 1 ≲ f 2 f_1 \lesssim f_2 f1f2。根据例0.4,我们不难验证 ( J , ≲ ) (\mathcal{J},\lesssim) (J,)是一个偏序集。显然它的所有子集都有一个上界,也就是 E → F E \to F EF的双射,根据下文定理0.7中的Zorn引理, J \mathcal{J} J存在一个最大元,记为 f : A → B , A ∈ P ( X ) , B ∈ P ( X ) f:A \to B,A \in \mathcal{P}(X),B \in \mathcal{P}(X) f:AB,AP(X),BP(X)。下面我们做一个递归:如果 x 0 ∈ E ∖ A x_0 \in E \setminus A x0EA, 我们可以找一个 y 0 ∈ F ∖ B y_0 \in F \setminus B y0FB,通过定义 f ( x 0 ) = y 0 f(x_0)=y_0 f(x0)=y0扩充单射 f f f,然后将 A ∪ { x 0 } A\cup \{x_0\} A{x0}定义为新的 A A A B ∪ { y 0 } B \cup \{y_0\} B{y0}定义为新的 B B B。重复这个操作,直到 A = X A=X A=X或者 B = Y B=Y B=Y,因此 ∣ E ∣ ≤ ∣ F ∣ |E| \le |F| EF ∣ F ∣ ≤ ∣ E ∣ |F| \le |E| FE必有一个成立。

综上, ≲ \lesssim 是幂集上的全序。

例0.6 在二维欧氏空间 R 2 = { ( x , y ) : x ∈ R , y ∈ R } \mathbb{R}^2=\{(x,y):x \in \mathbb{R}, y \in \mathbb{R}\} R2={(x,y):xR,yR}中,验证下面的关系是不是全序:

  1. ( x 1 , y 1 ) ≤ 1 ( x 2 , y 2 ) (x_1,y_1) \le_1 (x_2,y_2) (x1,y1)1(x2,y2)如果 x 1 ≤ x 2 x_1 \le x_2 x1x2
  2. ( x 1 , y 1 ) ≤ 2 ( x 2 , y 2 ) (x_1,y_1) \le_2 (x_2,y_2) (x1,y1)2(x2,y2)如果 ∣ x 1 ∣ + ∣ y 1 ∣ ≤ ∣ x 2 ∣ + ∣ y 2 ∣ |x_1|+|y_1| \le |x_2|+|y_2| x1+y1x2+y2
  3. ( x 1 , y 1 ) ≤ 3 ( x 2 , y 2 ) (x_1,y_1) \le_3 (x_2,y_2) (x1,y1)3(x2,y2)如果 ∣ x 1 ∣ 2 + ∣ y 1 ∣ 2 ≤ ∣ x 2 ∣ 2 + ∣ y 2 ∣ 2 |x_1|^2+|y_1|^2 \le |x_2|^2+|y_2|^2 x12+y12x22+y22

这个例题比较容易,读者可以自行验证这三个关系都是全序。

评注0.4

  • 说明一个关系是序关系只需要逐条验证定义即可,有些关系验证起来比较复杂,比如例0.5,但有些序关系非常明显;
  • 例0.6的几个结果说明在同一个集合上可能存在多种不同的全序,在不同的全序下元素的大小关系可能是不一样的,比如 ( 2 , 0 ) (2,0) (2,0) ( 1 , 4 ) (1,4) (1,4)相比,在 ≤ 1 \le_1 1下前者更大,在 ≤ 2 \le_2 2 ≤ 3 \le_3 3下后者更大,所以具体选用什么序关系取决于我们想解决的问题。比如在二维欧氏空间中,我们想在圆 ( x − 2 ) 2 + ( y − 2 ) 2 = 1 (x-2)^2+(y-2)^2=1 (x2)2+(y2)2=1中找一个距离原点最近的点,就可以在圆上定义序关系 ≤ 3 \le_3 3,找出最小元即可。再比如我们在比较两种方案时,方案一需要花掉90%的预算但能完成100%的工作,方案二只需要花掉70%的预算但也只能完成60%的工作,因为两种方案都没有花完预算,所以我们可以把预算作为 y y y,工作进度作为 x x x,用序关系 ≤ 1 \le_1 1来选出一个最优方案。

基于序关系可以定义最大元、最小元:

定义0.11 最大元与最小元
假设 ( X , ≤ ) (X,\le) (X,)是一个全序集,

  • 最大元: ∃ M ∈ X , ∀ x ∈ X , x ≤ M \exists M \in X, \forall x \in X, x \le M MX,xX,xM
  • 最小元: ∃ m ∈ X , ∀ x ∈ X , m ≤ x \exists m \in X, \forall x \in X, m \le x mX,xX,mx

定义0.12 良序
如果 ( X , ≤ ) (X,\le) (X,)的每个非空子集都存在最小元,就称 ( X , ≤ ) (X,\le) (X,)是良序集(well-ordered set),称 ≤ \le 是良序(well ordering)。

定理0.7 集合的最大元

  • Axiom of Choice(by Zermelo 1904):一列非空集合的笛卡尔积也是非空集合;
  • Zorn’s Lemma:如果偏序集的所有全序子集都有一个上界,那么这个偏序集有最大元
  • Hausdorff Maximal Principle:每个偏序集都有一个最大的全序子集
  • Well Ordering Principle (by Cantor 1883):任意非空集合上都可以定义一个良序使之成为良序集

评注0.5
说明:选择公理叙述中的笛卡尔积我们还没介绍到,所以等介绍了笛卡尔集合之后再讨论选择公理的内涵。

第一部分:Hausdorff Maximal Principle与Zorn引理的等价性

Hausdorff Maximal Principle说的是每个偏序集都有一个最大的全序子集,考虑偏序集 ( X , ≤ ) (X,\le) (X,),则 ∃ E ⊂ X \exists E \subset X EX ( E , ≤ ) (E,\le) (E,)是全序集,并且 E E E包含 X X X其他所有全序子集。按Zorn引理的叙述,偏序集的所有全序子集都有一个上界,则 ( E , ≤ ) (E,\le) (E,)存在一个上界,记这个上界为 M M M,则 M M M X X X的最大元(如果 M M M不是最大元,可以把 M M M纳入 E E E中,定义 E ′ = E ∪ { M } E'=E\cup\{M\} E=E{M},验证 E ′ E' E为全序集,则 E ′ ⊃ E E'\supset E EE,这与 E E E是最大的全序子集矛盾)。

当然Zorn引理也可以导出Hausdorff Maximal Principle,记 C \mathcal{C} C ( X , ≤ ) (X,\le) (X,)所有全序子集的集族,则 ( C , ⊂ ) (\mathcal{C},\subset) (C,)是一个偏序集,对这个偏序集应用Zorn引理,显然它存在一个最大元,这个最大元就是 ( X , ≤ ) (X,\le) (X,)最大的全序子集。

第二部分:Zorn引理推出良序原理

使用Zorn引理可以证明良序原则。我们需要引入一个工具:良序集的扩张。假设 ( A , ≤ ) (A,\le) (A,)是一个良序集, A ⊂ B A \subset B AB,定义关系 ≤ B \le_B B使得:

  1. ( A , ≤ ) (A,\le) (A,) ( A , ≤ B ) (A,\le_B) (A,B)等价;
  2. ∀ x ∈ B ∖ A \forall x \in B\setminus A xBA y ≤ B x , ∀ y ∈ A y \le_B x, \forall y \in A yBx,yA

( B , ≤ B ) (B,\le_B) (B,B)也是一个良序集,称之为良序集 ( A , ≤ ) (A,\le) (A,)的扩张。

我们再定义一个良序之间的序关系,用 R R R表示,因为 ( B , ≤ B ) (B,\le_B) (B,B) ( A , ≤ ) (A,\le) (A,)的扩张,这种序关系记为 ( A , ≤ ) R ( B , ≤ B ) (A,\le)R(B,\le_B) (A,)R(B,B)。用 C \mathcal{C} C表示偏序集 ( X , ≤ ) (X,\le) (X,)所有良序子集的集族,则 ( C , R ) (\mathcal{C},R) (C,R)是偏序集,根据Zorn引理,它存在一个最大元,接下来我们可以把最大元扩展到 X X X上,使 X X X被良序化。

第三部分:上面四个结论等价

事实上良序原则可以导出选择公理,选择公理也可以导出Zorn引理,因此这四个结果是全部等价的,当我们接受了选择公理之后,我们就可以基于这四个结果对集合进行分析。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页