自然数集的序关系
偏序关系
对
于
集
合
中
的
关
系
R
,
有
下
面
的
性
质
对于集合中的关系R,有下面的性质
对于集合中的关系R,有下面的性质
1
)
反
对
称
性
:
(
a
R
b
)
∧
(
b
R
a
)
→
a
=
b
1)反对称性:(aRb)∧(bRa) → a=b
1)反对称性:(aRb)∧(bRa)→a=b
2
)
传
递
性
:
(
a
R
b
)
∧
(
b
R
c
)
→
a
R
c
2)传递性~~~~:(aRb)∧(bRc) → aRc
2)传递性 :(aRb)∧(bRc)→aRc
3
)
自
反
性
:
对
∀
a
,
a
R
a
3)自反性~~~~:对∀a,aRa
3)自反性 :对∀a,aRa
那
么
称
其
为
偏
序
关
系
那么称其为偏序关系
那么称其为偏序关系
集合间的包含关系是一种偏序关系
考
虑
集
合
{
1
、
2
、
3
}
的
所
有
子
集
有
如
下
关
系
考虑集合\{1、2、3\}的所有子集有如下关系
考虑集合{1、2、3}的所有子集有如下关系
我
们
来
证
明
其
满
足
偏
序
关
系
我们来证明其满足偏序关系
我们来证明其满足偏序关系
1
,
反
对
称
性
:
1,反对称性:
1,反对称性:
A
⊂
B
,
B
⊂
A
,
由
集
合
的
性
质
有
A
=
B
~~~~~~A\subset B,B\subset A,由集合的性质有A=B
A⊂B,B⊂A,由集合的性质有A=B
2
,
传
递
性
:
2,传递性:
2,传递性:
A
⊂
B
,
B
⊂
C
,
由
集
合
性
质
有
A
⊂
C
~~~~~~A\subset B,B\subset C,由集合性质有A\subset C
A⊂B,B⊂C,由集合性质有A⊂C
3
,
自
反
性
:
3,自反性:
3,自反性:
A
⊂
A
,
成
立
~~~~~~A\subset A,成立
A⊂A,成立
~~~
偏
序
关
系
建
立
了
一
种
顺
序
关
系
,
但
它
是
不
完
全
的
(
P
a
r
t
i
a
l
)
,
因
为
从
图
中
偏序关系建立了一种顺序关系,但它是不完全的(Partial),因为从图中
偏序关系建立了一种顺序关系,但它是不完全的(Partial),因为从图中
可
以
发
现
,
{
1
}
、
{
2
}
和
{
3
}
之
间
没
有
关
系
可以发现,\{1\}、\{2\}和\{3\}之间没有关系
可以发现,{1}、{2}和{3}之间没有关系
~~
~~
全序关系
对
于
集
合
中
的
关
系
R
,
有
下
面
的
性
质
对于集合中的关系R,有下面的性质
对于集合中的关系R,有下面的性质
1
)
反
对
称
性
:
(
a
R
b
)
∧
(
b
R
a
)
→
a
=
b
1)反对称性:(aRb)∧(bRa) → a=b
1)反对称性:(aRb)∧(bRa)→a=b
2
)
传
递
性
:
(
a
R
b
)
∧
(
b
R
c
)
→
a
R
c
2)传递性~~~~:(aRb)∧(bRc) → aRc
2)传递性 :(aRb)∧(bRc)→aRc
3
)
完
全
性
:
对
∀
a
,
b
,
要
么
a
R
b
,
要
么
b
R
a
3)完全性~~~~:对∀a,b,要么aRb,要么bRa
3)完全性 :对∀a,b,要么aRb,要么bRa
那
么
称
其
为
全
序
关
系
那么称其为全序关系
那么称其为全序关系
~
完
全
性
包
含
了
自
反
性
:
完全性包含了自反性:
完全性包含了自反性:
对
a
,
有
(
a
R
a
)
∨
(
a
R
a
)
⇒
(
a
R
a
)
对a,有(aRa)∨(aRa)\Rightarrow(aRa)
对a,有(aRa)∨(aRa)⇒(aRa)
~
~
定义小于等于
N
是
自
然
数
集
,
对
于
∀
a
,
b
∈
N
,
a
≤
b
⟺
∃
n
∈
N
,
a
+
n
=
b
N是自然数集,对于\forall a,b\in N,a\leq b\iff\exists n\in N,a+n=b
N是自然数集,对于∀a,b∈N,a≤b⟺∃n∈N,a+n=b
~
自然数集N是一个对 “ ≤ ” “\leq” “≤”的全序集
1
)
反
对
称
性
:
1)反对称性:
1)反对称性:
若
a
≤
b
且
b
≤
a
,
那
么
∃
p
,
q
∈
N
,
使
a
+
p
=
b
,
b
+
q
=
a
~~~~~~若a\leq b且b\leq a,那么\exists p,q\in N,使a+p=b,b+q=a
若a≤b且b≤a,那么∃p,q∈N,使a+p=b,b+q=a
⇒
a
=
b
+
q
=
(
a
+
p
)
+
q
=
a
+
(
p
+
q
)
~~\Rightarrow a=b+q=(a+p)+q=a+(p+q)
⇒a=b+q=(a+p)+q=a+(p+q)
⇒
p
+
q
=
0
⇒
p
=
0
,
q
=
0
[
1
]
⇒
a
=
b
~~\Rightarrow p+q=0\Rightarrow p=0,q=0^{[1]}\Rightarrow a=b
⇒p+q=0⇒p=0,q=0[1]⇒a=b
2
)
传
递
性
:
2)传递性:
2)传递性:
若
a
≤
b
且
b
≤
c
,
那
么
∃
p
,
q
∈
N
,
使
a
+
p
=
b
,
b
+
q
=
c
~~~~~~若a\leq b且b\leq c,那么\exists p,q\in N,使a+p=b,b+q=c
若a≤b且b≤c,那么∃p,q∈N,使a+p=b,b+q=c
⇒
c
=
b
+
q
=
(
a
+
p
)
+
q
=
a
+
(
p
+
q
)
⇒
a
≤
c
~~\Rightarrow c=b+q=(a+p)+q=a+(p+q)\Rightarrow a≤c
⇒c=b+q=(a+p)+q=a+(p+q)⇒a≤c
3
)
完
全
性
:
3)完全性:
3)完全性:
对
于
∀
n
∈
N
,
有
f
(
n
)
=
n
+
1
,
故
可
知
n
≤
f
(
n
)
~~~~~~对于∀n∈N,有f(n)=n+1,故可知n≤f(n)
对于∀n∈N,有f(n)=n+1,故可知n≤f(n)
由
p
e
a
n
o
公
理
和
传
递
性
可
知
,
完
全
性
成
立
~~~~~~由peano公理和传递性可知,完全性成立
由peano公理和传递性可知,完全性成立
[
1
]
:
p
+
q
=
0
⇒
p
=
0
,
q
=
0
[1]:p+q=0\Rightarrow p=0,q=0
[1]:p+q=0⇒p=0,q=0
由
于
加
法
交
换
律
,
只
证
明
q
不
为
0
即
可
~~~~~~由于加法交换律,只证明q不为0即可
由于加法交换律,只证明q不为0即可
反
证
法
,
若
q
≠
0
,
那
么
必
有
一
个
q
′
,
使
q
=
f
(
q
′
)
~~~~~~反证法,若q\not= 0,那么必有一个q',使q=f(q')
反证法,若q=0,那么必有一个q′,使q=f(q′)
p
+
q
=
0
⇒
p
+
f
(
q
′
)
=
0
⇒
f
(
p
+
q
′
)
=
0
~~~~~~p+q=0 ⇒p+f(q')=0 ⇒f(p+q')=0
p+q=0⇒p+f(q′)=0⇒f(p+q′)=0
说
明
0
是
p
+
q
′
的
后
继
数
,
矛
盾
,
故
q
=
0
,
同
理
p
=
0
~~~~~~说明0是p+q'的后继数,矛盾,故q=0,同理p=0
说明0是p+q′的后继数,矛盾,故q=0,同理p=0
~~~
~
良序关系
好多啊,不想写,pass