数学分析(4):自然数集的序关系

本文介绍了偏序关系和全序关系的概念及其性质。偏序关系包括反对称性、传递性和自反性,如集合的包含关系。全序关系则额外要求完全性,即对任意元素都有关系。通过自然数集的“≤”关系证明了全序集的性质,展示了数学中的顺序结构。
摘要由CSDN通过智能技术生成

自然数集的序关系

偏序关系

对 于 集 合 中 的 关 系 R , 有 下 面 的 性 质 对于集合中的关系R,有下面的性质 R
1 ) 反 对 称 性 : ( a R b ) ∧ ( b R a ) → a = b 1)反对称性:(aRb)∧(bRa) → a=b 1(aRb)(bRa)a=b
2 ) 传 递 性      : ( a R b ) ∧ ( b R c ) → a R c 2)传递性~~~~:(aRb)∧(bRc) → aRc 2    (aRb)(bRc)aRc
3 ) 自 反 性      : 对 ∀ a , a R a 3)自反性~~~~:对∀a,aRa 3    aaRa
那 么 称 其 为 偏 序 关 系 那么称其为偏序关系

集合间的包含关系是一种偏序关系

考 虑 集 合 { 1 、 2 、 3 } 的 所 有 子 集 有 如 下 关 系 考虑集合\{1、2、3\}的所有子集有如下关系 {123}
在这里插入图片描述

我 们 来 证 明 其 满 足 偏 序 关 系 我们来证明其满足偏序关系
1 , 反 对 称 性 : 1,反对称性: 1
       A ⊂ B , B ⊂ A , 由 集 合 的 性 质 有 A = B ~~~~~~A\subset B,B\subset A,由集合的性质有A=B       AB,BAA=B
2 , 传 递 性 : 2,传递性: 2
       A ⊂ B , B ⊂ C , 由 集 合 性 质 有 A ⊂ C ~~~~~~A\subset B,B\subset C,由集合性质有A\subset C       AB,BCAC
3 , 自 反 性 : 3,自反性: 3
       A ⊂ A , 成 立 ~~~~~~A\subset A,成立       AA
    ~~~    
偏 序 关 系 建 立 了 一 种 顺 序 关 系 , 但 它 是 不 完 全 的 ( P a r t i a l ) , 因 为 从 图 中 偏序关系建立了一种顺序关系,但它是不完全的(Partial),因为从图中 (Partial)
可 以 发 现 , { 1 } 、 { 2 } 和 { 3 } 之 间 没 有 关 系 可以发现,\{1\}、\{2\}和\{3\}之间没有关系 {1}{2}{3}
   ~~   
   ~~   

全序关系

对 于 集 合 中 的 关 系 R , 有 下 面 的 性 质 对于集合中的关系R,有下面的性质 R
1 ) 反 对 称 性 : ( a R b ) ∧ ( b R a ) → a = b 1)反对称性:(aRb)∧(bRa) → a=b 1(aRb)(bRa)a=b
2 ) 传 递 性      : ( a R b ) ∧ ( b R c ) → a R c 2)传递性~~~~:(aRb)∧(bRc) → aRc 2    (aRb)(bRc)aRc
3 ) 完 全 性      : 对 ∀ a , b , 要 么 a R b , 要 么 b R a 3)完全性~~~~:对∀a,b,要么aRb,要么bRa 3    a,baRbbRa
那 么 称 其 为 全 序 关 系 那么称其为全序关系
  ~  
完 全 性 包 含 了 自 反 性 : 完全性包含了自反性:
对 a , 有 ( a R a ) ∨ ( a R a ) ⇒ ( a R a ) 对a,有(aRa)∨(aRa)\Rightarrow(aRa) a(aRa)(aRa)(aRa)
  ~  
  ~  

定义小于等于

N 是 自 然 数 集 , 对 于 ∀ a , b ∈ N , a ≤ b    ⟺    ∃ n ∈ N , a + n = b N是自然数集,对于\forall a,b\in N,a\leq b\iff\exists n\in N,a+n=b Na,bNabnNa+n=b
  ~  

自然数集N是一个对 “ ≤ ” “\leq” 的全序集

1 ) 反 对 称 性 : 1)反对称性: 1
       若 a ≤ b 且 b ≤ a , 那 么 ∃ p , q ∈ N , 使 a + p = b , b + q = a ~~~~~~若a\leq b且b\leq a,那么\exists p,q\in N,使a+p=b,b+q=a       abbap,qN使a+p=b,b+q=a
   ⇒ a = b + q = ( a + p ) + q = a + ( p + q ) ~~\Rightarrow a=b+q=(a+p)+q=a+(p+q)   a=b+q=(a+p)+q=a+(p+q)
   ⇒ p + q = 0 ⇒ p = 0 , q = 0 [ 1 ] ⇒ a = b ~~\Rightarrow p+q=0\Rightarrow p=0,q=0^{[1]}\Rightarrow a=b   p+q=0p=0,q=0[1]a=b
2 ) 传 递 性 : 2)传递性: 2
       若 a ≤ b 且 b ≤ c , 那 么 ∃ p , q ∈ N , 使 a + p = b , b + q = c ~~~~~~若a\leq b且b\leq c,那么\exists p,q\in N,使a+p=b,b+q=c       abbcp,qN使a+p=b,b+q=c
   ⇒ c = b + q = ( a + p ) + q = a + ( p + q ) ⇒ a ≤ c ~~\Rightarrow c=b+q=(a+p)+q=a+(p+q)\Rightarrow a≤c   c=b+q=(a+p)+q=a+(p+q)ac
3 ) 完 全 性 : 3)完全性: 3:
       对 于 ∀ n ∈ N , 有 f ( n ) = n + 1 , 故 可 知 n ≤ f ( n ) ~~~~~~对于∀n∈N,有f(n)=n+1,故可知n≤f(n)       nNf(n)=n+1,nf(n)
       由 p e a n o 公 理 和 传 递 性 可 知 , 完 全 性 成 立 ~~~~~~由peano公理和传递性可知,完全性成立       peano

[ 1 ] : p + q = 0 ⇒ p = 0 , q = 0 [1]:p+q=0\Rightarrow p=0,q=0 [1]:p+q=0p=0,q=0
       由 于 加 法 交 换 律 , 只 证 明 q 不 为 0 即 可 ~~~~~~由于加法交换律,只证明q不为0即可       q0
       反 证 法 , 若 q ≠ 0 , 那 么 必 有 一 个 q ′ , 使 q = f ( q ′ ) ~~~~~~反证法,若q\not= 0,那么必有一个q',使q=f(q')       q=0,q,使q=f(q)
       p + q = 0 ⇒ p + f ( q ′ ) = 0 ⇒ f ( p + q ′ ) = 0 ~~~~~~p+q=0 ⇒p+f(q')=0 ⇒f(p+q')=0       p+q=0p+f(q)=0f(p+q)=0
       说 明 0 是 p + q ′ 的 后 继 数 , 矛 盾 , 故 q = 0 , 同 理 p = 0 ~~~~~~说明0是p+q'的后继数,矛盾,故q=0,同理p=0       0p+qq=0p=0
    ~~~    
  ~  

良序关系

好多啊,不想写,pass

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值