初等数学O 集合论基础 第四节 二元关系、等价类与运算

本文深入探讨集合论中的二元关系和等价类概念,介绍了笛卡尔积、二元关系的定义及性质,特别讨论了等价关系的自反性、对称性和传递性,并通过等价关系对集合进行分割,同时阐述了如何通过等价类构造分割。此外,还讲解了二元运算的定义及其在集合上的封闭性,以加法和乘法为例进行了说明。
摘要由CSDN通过智能技术生成

初等数学O 集合论基础 第四节 二元关系、等价类与运算

这一讲的目标是在非空集合上定义关系与运算,我们学过的常见的关系有大小关系、整除关系、同余关系等;常见的运算有四则运算、乘方运算、开方运算等,但这一讲要做的事情是给出关系与运算的更抽象的定义,使在任意集合上定义关系与运算变得可能。

之所以要引入关系与运算是因为前三讲介绍的工具大部分都是处理集合运算的,而能够处理集合元素的工具只有序关系,为了让集合论起更大的作用,我们需要扩充能够处理集合元素的工具箱。


在正式引入关系与运算前,我们先介绍一个重要的工具——笛卡尔积(Cartesian Product)。
定义0.13 笛卡尔积(或称为直积)
假设 X , Y X,Y X,Y是两个非空集合,定义它们的笛卡尔积为
X × Y = { ( x , y ) : x ∈ X , y ∈ Y } X \times Y = \{(x,y):x \in X,y \in Y\} X×Y={ (x,y):xX,yY}

假设 { X i } i = 1 n \{X_i\}_{i=1}^n { Xi}i=1n是有限个非空集合,定义它们的笛卡尔积为
∏ i = 1 n X i = { x = ( x 1 , x 2 , ⋯   , x n ) : x i ∈ X i , i = 1 , ⋯   , n } \prod_{i=1}^n X_i = \{x=(x_1,x_2,\cdots,x_n):x_i \in X_i,i=1,\cdots,n\} i=1nXi={ x=(x1,x2,,xn):xiXi,i=1,,n}

比如 X = Y = R X=Y=\mathbb{R} X=Y=R,即 X , Y X,Y X,Y都是一根数轴,则 X × Y = R 2 X\times Y=\mathbb{R}^2 X×Y=R2,也就是 X × Y X \times Y X×Y就成了平面直角坐标系。

评注0.6
i) 集合的笛卡尔积与原集合之间自然就存在一个映射 π i : ∏ i = 1 n X i → X i \pi_i:\prod_{i=1}^n X_i \to X_i πi:i=1nXiXi,满足
π i ( x ) = x i \pi_i(x)=x_i πi(x)=xi

显然这个映射是一个单射,通常我们称这个映射为projection,因为它就是 n n n维直角坐标系中的点向第 i i i个轴的投影。比如在平面直角坐标系中,
π x ( ( x , y ) ) = x , π y ( ( x , y ) ) = y \pi_x((x,y))=x,\pi_y((x,y))=y πx((x,y))=x,πy((x,y))=y

分别表示平面直角坐标系中的点到 x x x轴、 y y y轴的投影。在数学分析与实分析中,这个映射是非常有用的。

ii)我们回顾一下第三讲选择公理的叙述,一列非空集合的笛卡尔积也是非空集合。对于
∏ i = 1 n X i = { x = ( x 1 , x 2 , ⋯   , x n ) : x i ∈ X i , i = 1 , ⋯   , n } \prod_{i=1}^n X_i = \{x=(x_1,x_2,\cdots,x_n):x_i \in X_i,i=1,\cdots,n\} i=1nXi={ x=(x1,x2,,xn):xiXi,i=1,,n}

这个集合非空说明至少存在一个 x ∈ ∏ i = 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值