UA MATH523A 实分析3 积分理论例题 Fubini定理计算简单二重积分的一个例题
例 f ∈ L 1 ( [ 0 , 1 ] ) f \in L^1([0,1]) f∈L1([0,1]), define
h ( x ) = ∫ x 1 f ( t ) t d t , ∀ x ∈ [ 0 , 1 ] h(x) = \int_x^1 \frac{f(t)}{t}dt,\forall x \in [0,1] h(x)=∫x1tf(t)dt,∀x∈[0,1]
Prove
- h ∈ L 1 ( [ 0 , 1 ] ) h \in L^1([0,1]) h∈L1([0,1])
- ∫ 0 1 h ( x ) d x = ∫ 0 1 f ( x ) d x \int_0^1h(x)dx=\int_0^1f(x)dx ∫01h(x)dx=∫01f(x)dx
解
第一问:要说明 h ∈ L 1 ( [ 0 , 1 ] ) h \in L^1([0,1]) h∈L1([0,1]),需要说明 ∫ 0 1 ∣ h ( x ) ∣ d x < ∞ \int_0^1 |h(x)|dx<\infty ∫01∣h(x)