UA MATH523A 实分析3 积分理论例题 Fubini定理计算简单二重积分的一个例题

本文通过实例展示了如何利用Fubini定理计算一个关于L1函数的二重积分问题。首先证明了所定义的函数h(x)属于L1([0,1]),然后应用Fubini定理证明了∫01h(x)dx等于∫01f(x)dx,从而揭示了Fubini定理在实分析中的应用。" 105337306,4956627,QT5.12+MINGW32调用ffmpeg库错误:missing -D__STDC_FORMAT_MACROS,"['QT开发', 'ffmpeg集成', '编译配置', 'MINGW32', '错误修复']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA MATH523A 实分析3 积分理论例题 Fubini定理计算简单二重积分的一个例题

f ∈ L 1 ( [ 0 , 1 ] ) f \in L^1([0,1]) fL1([0,1]), define
h ( x ) = ∫ x 1 f ( t ) t d t , ∀ x ∈ [ 0 , 1 ] h(x) = \int_x^1 \frac{f(t)}{t}dt,\forall x \in [0,1] h(x)=x1tf(t)dt,x[0,1]

Prove

  1. h ∈ L 1 ( [ 0 , 1 ] ) h \in L^1([0,1]) hL1([0,1])
  2. ∫ 0 1 h ( x ) d x = ∫ 0 1 f ( x ) d x \int_0^1h(x)dx=\int_0^1f(x)dx 01h(x)dx=01f(x)dx


第一问:要说明 h ∈ L 1 ( [ 0 , 1 ] ) h \in L^1([0,1]) hL1([0,1]),需要说明 ∫ 0 1 ∣ h ( x ) ∣ d x < ∞ \int_0^1 |h(x)|dx<\infty 01h(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值