UA MATH567 高维统计IV Lipschitz组合7 Grassman流形与Haar测度

UA MATH567 高维统计IV Lipschitz组合7 Grassman流形与Haar测度

这一讲我们介绍Grassman流形与Grassman流形上的均匀分布,并尝试导出Grassman流形上的均匀分布的Lipschitz函数具有亚高斯性。

Grassman流形基础

Grassman流形与度量

Grassman流形是代数几何的基本工具之一,为了在Grassman流形上定义均匀分布,我们先介绍一点Grassman流形的基本概念,然后在Grassman流形上定义度量概率空间。简单理解的话,Grassman流形是一个向量空间的给定维数的子空间组成的集合,比如三维欧氏空间中所有直线的组合就是一个Grassman流形。用 V V V表示向量空间,假设 d i m V = n dimV=n dimV=n,记它所有的 m m m维子空间组成的Grassman流形是 G n , m G_{n,m} Gn,m

要定义 G n , m G_{n,m} Gn,m中任意两个子空间的距离,我们可以考虑用子空间的正交投影, ∀ E ∈ G n , m \forall E \in G_{n,m} EGn,m,称线性算子 P E P_E PE是它的正交投影如果

  1. P E 2 = P E P_E^2=P_E PE2=PE
  2. C ( P ) ⊥ N ( P ) C(P) \perp N(P) C(P)N(P)(即列空间与核空间正交)

给定子空间,正交投影具有存在唯一性,于是对 ∀ E , F ∈ G n , m \forall E,F \in G_{n,m} E,FGn,m,定义
d ( E , F ) = ∥ P E − P F ∥ d(E,F) = \left\| P_E - P_F \right\| d(E,F)=PEPF

这里的范数是算子范数,这样 ( G n , m , d ) (G_{n,m},d) (Gn,m,d)就成了一个度量空间,接下来我们在这个度量空间上定义测度。

Haar测度
我们再来理解一下Grassman流形上的点,每一个点代表一个线性子空间,每一个线性子空间对应一个正交投影,于是我们可以把Grassman流形中的元素理解为一个正交投影变换。

引入一个概念:测度的变换不变性。在度量空间 ( G n , m , d ) (G_{n,m},d) (Gn,m,d)上我们可以定义开集,进而导出Borel代数,记为 B ( G n , m ) \mathcal{B}(G_{n,m}) B(Gn,m)。设 μ \mu μ是可测空间 ( G n , m , B ( G n , m ) ) (G_{n,m},\mathcal{B}(G_{n,m})) (Gn,m,B(Gn,m))上的一个测度,称 μ \mu μ关于正交投影变换具有不变性,如果 ∀ B ∈ B ( G n , m ) \forall B \in \mathcal{B}(G_{n,m}) BB(Gn,m) ∀ E ∈ S O ( n ) \forall E \in SO(n) ESO(n)
μ ( B ) = μ ( P E B ) \mu(B) = \mu(P_EB) μ(B)=μ(PEB)

既然我们把 G n , m G_{n,m} Gn,m理解为 n n n维向量空间到 m m m维线性子空间的正交投影的集合,那就很容易验证它在正交投影变换的和与积的意义下是一个群。在变换群上,满足这个条件的测度是唯一的,我们称这个测度为Haar测度,用 P P </

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值