UA MATH567 高维统计 专题0 为什么需要高维统计理论?——以线性判别分析为例

UA MATH567 高维统计 专题0 为什么需要高维统计理论?——以线性判别分析为例

线性判别分析基础

理论

我们回顾一下二元假设检验问题,它的目标是判断某一个observation x ∈ R d x \in \mathbb{R}^d xRd到底属于总体 P 1 P_1 P1还是 P 2 P_2 P2,在统计理论中,Neyman-Pearson引理说明了似然比检验是最优检验,也就是基于 log ⁡ P 2 ( x ) P 1 ( x ) \log \frac{P_2(x)}{P_1(x)} logP1(x)P2(x)导出的检验统计量与拒绝域是最优的。现在我们考虑线性判别分析的设定,假设两个总体分别是 N ( μ 1 , Σ ) , N ( μ 2 , Σ ) N(\mu_1,\Sigma),N(\mu_2,\Sigma) N(μ1,Σ),N(μ2,Σ),则给定某个observation x ∈ R d x \in \mathbb{R}^d xRd,对数似然比为(多元正态分布的概率密度参考我之前这一篇
log ⁡ P 1 ( x ) P 2 ( x ) = log ⁡ ( 2 π ) − d / 2 ∣ Σ ∣ − 1 / 2 exp ⁡ ( − 1 2 ( x − μ 1 ) ′ Σ − 1 ( x − μ 1 ) ) ( 2 π ) − d / 2 ∣ Σ ∣ − 1 / 2 exp ⁡ ( − 1 2 ( x − μ 2 ) ′ Σ − 1 ( x − μ 2 ) ) = 1 2 ( x − μ 2 ) ′ Σ − 1 ( x − μ 2 ) − 1 2 ( x − μ 1 ) ′ Σ − 1 ( x − μ 1 ) = 1 2 ( x − μ 1 + ( μ 1 − μ 2 ) ) ′ Σ − 1 ( x − μ 1 + μ 2 2 + μ 1 + μ 2 2 − μ 2 ) − 1 2 ( x − μ 1 ) ′ Σ − 1 ( x − μ 1 + μ 2 2 + μ 1 + μ 2 2 − μ 1 ) = 1 2 ( x − μ 1 ) ′ Σ − 1 ( x − μ 1 + μ 2 2 ) + 1 2 ( μ 1 − μ 2 ) ′ Σ − 1 ( x − μ 1 + μ 2 2 ) + 1 4 ( x − μ 1 ) ′ Σ − 1 ( μ 1 − μ 2 ) + 1 4 ( μ 1 − μ 2 ) ′ Σ − 1 ( μ 1 − μ 2 ) − 1 2 ( x − μ 1 ) ′ Σ − 1 ( x − μ 1 + μ 2 2 ) − 1 4 ( x − μ 1 ) ′ Σ − 1 ( μ 1 − μ 2 ) = 1 2 ( μ 1 − μ 2 ) ′ Σ − 1 ( x − μ 1 + μ 2 2 ) + 1 4 ( μ 1 − μ 2 ) ′ Σ − 1 ( μ 1 − μ 2 ) ∝ Ψ ( x ) = ( μ 1 − μ 2 ) ′ Σ − 1 ( x − μ 1 + μ 2 2 ) \log \frac{P_1(x)}{P_2(x)}=\log \frac{(2\pi)^{-d/2}|\Sigma|^{-1/2}\exp \left( -\frac{1}{2}(x-\mu_1)'\Sigma^{-1}(x-\mu_1) \right)}{(2\pi)^{-d/2}|\Sigma|^{-1/2}\exp \left( -\frac{1}{2}(x-\mu_2)'\Sigma^{-1}(x-\mu_2) \right)} \\ = \frac{1}{2}(x-\mu_2)'\Sigma^{-1}(x-\mu_2) -\frac{1}{2}(x-\mu_1)'\Sigma^{-1}(x-\mu_1) \\ = \frac{1}{2}(x-\mu_1+(\mu_1-\mu_2))'\Sigma^{-1}(x-\frac{\mu_1+\mu_2}{2}+\frac{\mu_1+\mu_2}{2}-\mu_2) \\-\frac{1}{2}(x-\mu_1)'\Sigma^{-1}(x-\frac{\mu_1+\mu_2}{2}+\frac{\mu_1+\mu_2}{2}-\mu_1) \\ = \frac{1}{2}(x-\mu_1)'\Sigma^{-1}(x-\frac{\mu_1+\mu_2}{2})+\frac{1}{2}(\mu_1-\mu_2)'\Sigma^{-1}(x-\frac{\mu_1+\mu_2}{2}) \\ +\frac{1}{4}(x-\mu_1)'\Sigma^{-1}(\mu_1-\mu_2)+\frac{1}{4}(\mu_1-\mu_2)'\Sigma^{-1}(\mu_1-\mu_2) \\ - \frac{1}{2}(x-\mu_1)'\Sigma^{-1}(x-\frac{\mu_1+\mu_2}{2})-\frac{1}{4}(x-\mu_1)'\Sigma^{-1}(\mu_1-\mu_2) \\ = \frac{1}{2}(\mu_1-\mu_2)'\Sigma^{-1}(x-\frac{\mu_1+\mu_2}{2})+\frac{1}{4}(\mu_1-\mu_2)'\Sigma^{-1}(\mu_1-\mu_2) \\ \propto \Psi(x)=(\mu_1-\mu_2)'\Sigma^{-1}(x-\frac{\mu_1+\mu_2}{2}) logP2(x)P1(x)=log(2π)d/2Σ1/2exp(21(xμ2)Σ1(xμ2))(2π)d/2Σ1/2exp(21(xμ1)Σ1(xμ1))=21(xμ2)Σ1(xμ2)21(xμ1)Σ1(xμ1)=21(xμ1+(μ1μ2

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值