UA MATH566 统计理论5 假设检验简介

本文介绍了统计学中的假设检验,包括错误类型、拒绝域和势(power)。通过Neyman-Pearson引理解释了最强大检验的概念,并以正态分布的均值检验为例,展示了如何构造拒绝域。此外,还讨论了ROC曲线在比较不同检验势中的作用。
摘要由CSDN通过智能技术生成

UA MATH566 统计理论5 假设检验简介

这一讲根据最简单的一类假设检验介绍假设检验的思想。假设 θ 0 , θ 1 ∈ Θ \theta_0,\theta_1 \in \Theta θ0,θ1Θ,原假设和备择假设是
H 0 : θ = θ 0 H a : θ = θ 1 H_0:\theta = \theta_0 \\ H_a:\theta = \theta_1 H0:θ=θ0Ha:θ=θ1
我们需要根据样本来决定是拒绝原假设或者不能拒绝原假设。假设检验有可能出现两种错误,Type I error(假阳性)是在错误地拒绝了为真的原假设,Type II error(假阴性)是在原假设非真时没能拒绝原假设。记 α \alpha α为Type I error发生的概率, α \alpha α又叫显著性水平,则
α = P ( r e j e c t   H 0 ∣ θ = θ 0 ) \alpha = P(reject\ H_0|\theta=\theta_0) α=P(reject H0θ=θ0)
β \beta β为Type II error发生的概率,
β = P ( a c c e p t   H 0 ∣ θ = θ 1 ) \beta = P(accept\ H_0| \theta=\theta_1) β=P(accept H0θ=θ1)
1 − β 1-\beta 1β为检验的势(power)。记样本为 X = { X 1 , ⋯   , X n } X=\{X_1,\cdots,X_n\} X={ X1,,Xn},定义critical region,或者说拒绝域为
X ∈ C ⇔ r e j e c t   H 0 X \in C \Leftrightarrow reject\ H_0 XCreject H0
记显著性水平 α \alpha α下,most powerful的拒绝域为 C ∗ C^* C,若对所有(显著性水平 α \alpha α下的)拒绝域 C C C

  1. α = P ( X ∈ C ∗ ∣ θ = θ 0 ) = P ( X ∈ C ∣ θ = θ 0 ) \alpha=P(X \in C^*|\theta=\theta_0)=P(X \in C|\theta=\theta_0) α=P(XCθ=θ0)=P(XCθ=θ0),即相同的显著性水平
  2. β ∗ ≤ β \beta^* \le \beta ββ,即最大的势。其中 β ∗ = P ( X ∈ C ∗ ∣ θ = θ 1 ) \beta^*=P(X \in C^*|\theta=\theta_1) β=P(XCθ=θ1) β = P ( X ∈ C ∣ θ = θ 1 ) \beta=P(X \in C|\theta=\theta_1) β=P(XCθ=θ1)

ROC曲线可以比较直观地比较不同检验的power。定义Receiving Operator Curve(ROC)为 1 − β 1-\beta 1β关于 α \alpha α的图像,如果某个检验的ROC曲线在其他检验的上方,则这个检验就有更大的势。
定义上面那个简单检验的似然比为
λ ( X ) = sup ⁡ { θ = θ 0 } L ( θ ∣ X ) sup ⁡ { θ = θ 0 , θ 1 } L ( θ ∣ X ) = L ( θ 0 ∣ X ) max ⁡ { L ( θ 0 ∣ X ) , L ( θ 1 ∣ X ) } \lambda(X) = \frac{\sup_{\{\theta=\theta_0\}} L(\theta|X)}{\sup_{\{\theta=\theta_0,\theta_1\}} L(\theta|X)} = \frac{L(\theta_0|X)}{\max\{L(\theta_0|X),L(\theta_1|X)\}} λ(X)=sup{ θ=θ0,θ1}L(θX)sup{ θ=θ0}L(θX)=max{ L(θ0X),L(θ1X)}L(θ0X)
显然 λ ( X ) ∈ [ 0 , 1 ] \lambda(X) \in [0,1] λ(X)[0,1],用这个统计量(似然比统计量,这个检验叫似然比检验)构造拒绝域为
C ∗ = { X : λ ( X ) ≤ c } C^*=\{X:\lambda(X) \le c\} C={ X:λ(X)c}
其中 c ∈ [ 0 , 1 ] c \in [0,1] c[0,1],它的选取与显著性水平相关。这个拒绝域的定义也比较合理,如果原假设的似然相比备择假设来说非常小的话,我们是应该拒绝原假设的。注意到如果 max ⁡ { L ( θ 0 ∣ X ) , L ( θ 1 ∣ X ) } = L ( θ 0 ∣ X ) \max\{L(\theta_0|X),L(\theta_1|X)\}=L(\theta_0|X) max{ L(θ0X),L(θ1X)}=L(θ0X),这个时候 λ ( X ) = 1 \lambda(X)=1 λ(X)=1,显然不会拒绝原假设,所以对于这个简单的假设检验,一般把拒绝域写成
C ∗ = { X : L ( θ 0 ∣ X ) L ( θ 1 ∣ X ) ≤ c α } C^*=\{X:\frac{L(\theta_0|X)}{L(\theta_1|X)}\le c_{\alpha}\} C={ X:L(θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值