UA PHYS515 电磁理论I 麦克斯韦方程组基础2 从实验定律到麦克斯韦方程
上一讲介绍了两个重要的关于静电场与静磁场的重要定律,这一讲我们介绍从实验定律到Maxwell方程的总结过程。第一件要做的事情,就是请大家忘掉场论、向量分析相关的数学知识(散度、旋度、Gauss公式、Stokes公式等),因为物理学家相信自己的物理学直觉,基于physically meaningful definitions导出的公式如果正好与某些数学公式相同了,那也只是巧合,是数学家尝试从物理学家的推导中抽象出一些结构罢了,毕竟有Maxwell方程的年代还没有向量分析。
我们先给出Maxwell方程组,然后再介绍怎么从实验定律得到这个方程组:
∇ ⋅ E ⃗ = 4 π ρ ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ × B ⃗ = 4 π J + ∂ E ⃗ ∂ t \nabla \cdot \vec{E}=4\pi \rho \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ \nabla \times \vec{B}=4\pi J+\frac{\partial \vec{E}}{\partial t} ∇⋅E=4πρ∇⋅B=0∇×E=−∂t∂B∇×B=4πJ+∂t∂E
前两个方程是电场与磁场的Gauss方程,分别由库仑定律与毕奥-萨法尔定律导出;后两个方程分别由法拉第定律与安培定律导出。前两个方程是一维的,后两个方程是三维的,所有我们一共有八个方程,但我们只有六个未知量,所以这其实是一个超定系统;一种可能的改进方法是用电磁场的potential代替强度,这样这个系统方程数和未知量个数就一样了,下一讲我们会讨论这个方法。最后就是这些方程讨论的是真空中的电磁场,所以方程中没有与介质有关的常数;下下讲我们讨论怎么在修正Maxwell方程组,使之能够表达任意介质中的电磁场。
从Coulomb定律到电场强度的Gauss方程
Gauss方程是从库仑定律导出的,它的想法非常简单,通过封闭曲面的electric flux与这个封闭曲面包围的净电荷成正比:假设某个位置有总电荷量为 Q Q Q的一些粒子,则通过包围这些粒子的封闭曲面 S S S的电场强度满足
∮ S E ⃗ ⋅ d A ⃗ ∝ Q \oint_S \vec{E} \cdot d\vec{A} \propto Q ∮SE⋅dA∝Q
如果 S S S是半径为 r r r的球面,根据库仑定律
∮ S E ⃗ ⋅ d A ⃗ = E r ∮ S d A ⃗ = 4 π r 2 E r = 4 π r 2 Q r 2 = 4 π Q \oint_S \vec{E} \cdot d\vec{A}=E_r\oint_S d\vec{A}=4\pi r^2 E_r =4\pi r^2 \frac{Q}{r^2}=4 \pi Q ∮SE⋅dA=Er∮SdA=4πr2Er=4πr2r2Q=4πQ
当charge的分布复杂时,不希望用这种global的方法来表示,因为不够精确,我们可以参考一下定义电场的方法,用极限来定义上面的关系,称下面的定义为outflux per unit volume,
d i v E ⃗ = lim V → 0 1 V ∮ S ( V ) E ⃗ ⋅ d A ⃗ div \vec{E}=\lim_{V \to 0} \frac{1}{V}\oint_{S(V)} \vec{E} \cdot d\vec{A} divE=V→0limV1∮S(V)E⋅dA
这里 V V V表示封闭曲面围成的体积。下面我们讨论一种特殊情况,
在电场存在的空间内考虑体积微元 d V = d x d y d z dV=dxdydz dV=dxdydz,某 x x x方向强度为 E x E_x Ex的电场穿过这个体积微元后受微元内的可能存在的charge的影响变成了 E x + ∂ E x ∂ x d x E_x+\frac{\partial E_x}{\partial x}dx Ex+∂x∂Exdx,其他几个方向类似,于是在这个体积微元上,
∮ S ( V ) E ⃗ ⋅ d A ⃗ = ∂ E x ∂ x d x d y d z + ∂ E y ∂ y d y d z d x + ∂ E z ∂ z d z d x d y lim V → 0 1 V ∮ S ( V ) E ⃗ ⋅ d A ⃗ = lim V → 0 ∂ E x ∂ x d x d y d z + ∂ E y ∂ y d y d z d x + ∂ E z ∂ z d z d x d y d x d y d z = ∂ E x ∂ x + ∂ E y ∂ y + ∂ E z ∂ z = d i v E ⃗ = ∇ ⋅ E ⃗ \oint_{S(V)} \vec{E} \cdot d\vec{A}=\frac{\partial E_x}{\partial x}dx dydz+\frac{\partial E_y}{\partial y}dy dzdx+\frac{\partial E_z}{\partial z}dz dxdy \\ \lim_{V \to 0} \frac{1}{V}\oint_{S(V)} \vec{E} \cdot d\vec{A}=\lim_{V \to 0} \frac{\frac{\partial E_x}{\partial x}dx dydz+\frac{\partial E_y}{\partial y}dy dzdx+\frac{\partial E_z}{\partial z}dz dxdy}{dxdydz} \\ = \frac{\partial E_x}{\partial x}+\frac{\partial E_y}{\partial y}+\frac{\partial E_z}{\partial z}=div\vec{E}=\nabla \cdot \vec{E} ∮S(V)E⋅dA=∂x∂Exdxdydz+∂y∂Eydydzdx+∂z∂EzdzdxdyV→0limV1∮S(V)E⋅dA=V→0limdxdydz∂x∂Exdxdydz+∂y∂Eydydzdx+∂z∂Ezdzdxdy=∂x∂Ex+∂y∂Ey+∂z∂Ez=divE