概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire‘s Category与Banach-Steinhaus定理的证明

本文介绍了算子半群在概率论与数理统计中的重要性,特别是在随机微分方程和统计计算理论中的应用。文章深入探讨了Banach-Steinhaus定理,即均匀有界性原理,首先阐述了Baire’s Category Theorem,然后通过反证法证明Banach空间不是第一类别集,最后展示了Banach-Steinhaus定理的证明思路和其在有界线性算子上的应用。
摘要由CSDN通过智能技术生成

概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire's Category与Banach-Steinhaus定理的证明

写在前面

在随机微分方程那个系列中,我们在讨论Markov family的时候引入了Markov family的算子半群,这是一个在概率论与数理统计的理论中非常强大的分析工具。在随机分析中,算子半群可以用来分析Markov过程与Levy过程的性质,进而分析某些随机微分方程的解的构造;在统计计算的理论中,算子半群可以用来表达一种MCMC类的算法,这样就能把算法的收敛与误差分析化归为对算子半群的范数的讨论。所以我打算单独开一个系列,介绍概统中的算子半群。

Baire’s Category Theorem

Baire’s Category Theorem是泛函分析中的经典结果,我们先引入这个工具。

nowhere dense
( X , ∥ ⋅ ∥ ) (X,\left\| \cdot \right\|) (X,)是一个赋范线性空间, S S S是它的子集;
∀ x ∈ X , ϵ > 0 \forall x \in X,\epsilon>0 xX,ϵ>0 B ( x , ϵ ) = { y ∈ X : ∥ y − x ∥ < ϵ } B(x,\epsilon)=\{y \in X:\left\| y -x \right\|<\epsilon \} B(x,ϵ)={ yX:yx<ϵ}被称为 X X X中的open ball;
∀ x ∈ X , ϵ > 0 \forall x \in X,\epsilon>0 xX,ϵ>0 B ˉ ( x , ϵ ) = { y ∈ X : ∥ y − x ∥ ≤ ϵ } \bar B(x,\epsilon)=\{y \in X:\left\| y -x \right\|\le \epsilon \} Bˉ(x,ϵ)={ yX:yxϵ}被称为 X X X中的closed ball;
S S S nowhere dense if and only if (in short, iff) S S S的闭包( c l S cl S clS)不包含任何open ball,另一种表述为任意open ball B B B都有一个open ball子集 B ′ B' B,使得 S ∩ B ′ = ϕ S \cap B' = \phi SB=ϕ

Baire first category set
在拓扑空间中,能被可列个nowhere dense集合的并表示的集合被称为Baire first category set;

Baire second category set
在拓扑空间中,能被可列个nowhere dense集合或者开集的并表示的集合被称为Baire second category set,或者不是Baire first category set的集合就是Baire second category set;

Baire’s Category Theorem
Banach空间不能表示成可列个nowhere dense集合的并(也就是说Banach空间不是Baire first category set,它是Baire second category set)

证明思路
用反证法,假设 X X X是Banach空间, { S n } \{S_n\} { Sn}是可列个nowhere dense集合,并且
X = ⋃ n ∈ N S n X = \bigcup_{n \in \mathbb{N}} S_n X=nNSn

假设 B 0 = B ( 0 , 1 ) B_0=B(0,1) B<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值