概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire‘s Category与Banach-Steinhaus定理的证明

概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire's Category与Banach-Steinhaus定理的证明

写在前面

在随机微分方程那个系列中,我们在讨论Markov family的时候引入了Markov family的算子半群,这是一个在概率论与数理统计的理论中非常强大的分析工具。在随机分析中,算子半群可以用来分析Markov过程与Levy过程的性质,进而分析某些随机微分方程的解的构造;在统计计算的理论中,算子半群可以用来表达一种MCMC类的算法,这样就能把算法的收敛与误差分析化归为对算子半群的范数的讨论。所以我打算单独开一个系列,介绍概统中的算子半群。

Baire’s Category Theorem

Baire’s Category Theorem是泛函分析中的经典结果,我们先引入这个工具。

nowhere dense
( X , ∥ ⋅ ∥ ) (X,\left\| \cdot \right\|) (X,)是一个赋范线性空间, S S S是它的子集;
∀ x ∈ X , ϵ > 0 \forall x \in X,\epsilon>0 xX,ϵ>0 B ( x , ϵ ) = { y ∈ X : ∥ y − x ∥ < ϵ } B(x,\epsilon)=\{y \in X:\left\| y -x \right\|<\epsilon \} B(x,ϵ)={yX:yx<ϵ}被称为 X X X中的open ball;
∀ x ∈ X , ϵ > 0 \forall x \in X,\epsilon>0 xX,ϵ>0 B ˉ ( x , ϵ ) = { y ∈ X : ∥ y − x ∥ ≤ ϵ } \bar B(x,\epsilon)=\{y \in X:\left\| y -x \right\|\le \epsilon \} Bˉ(x,ϵ)={yX:yxϵ}被称为 X X X中的closed ball;
S S S nowhere dense if and only if (in short, iff) S S S的闭包( c l S cl S clS)不包含任何open ball,另一种表述为任意open ball B B B都有一个open ball子集 B ′ B' B,使得 S ∩ B ′ = ϕ S \cap B' = \phi SB=ϕ

Baire first category set
在拓扑空间中,能被可列个nowhere dense集合的并表示的集合被称为Baire first category set;

Baire second category set
在拓扑空间中,能被可列个nowhere dense集合或者开集的并表示的集合被称为Baire second category set,或者不是Baire first category set的集合就是Baire second category set;

Baire’s Category Theorem
Banach空间不能表示成可列个nowhere dense集合的并(也就是说Banach空间不是Baire first category set,它是Baire second category set)

证明思路
用反证法,假设 X X X是Banach空间, { S n } \{S_n\} {Sn}是可列个nowhere dense集合,并且
X = ⋃ n ∈ N S n X = \bigcup_{n \in \mathbb{N}} S_n X=nNSn

假设 B 0 = B ( 0 , 1 ) B_0=B(0,1) B0=B(0,1),因为 S 1 S_1 S1 nowhere dense,于是 ∃ B 1 ⊂ B 0 \exists B_1 \subset B_0 B1B0 B 1 B_1 B1是open ball并且 B 1 ∩ S 1 = ϕ B_1 \cap S_1 = \phi B1S1=ϕ;我们可以假设 B 1 B_1 B1的半径小于 1 / 2 1/2 1/2,如果 B 1 B_1 B1的半径大于 1 / 2 1/2 1/2,我们总是可以找到一个更小的open ball与 S 1 S_1 S1无交;

重复这个过程, S 2 S_2 S2 nowhere dense,于是存在 B 1 B_1 B1的open ball子集 B 2 B_2 B2使得 S 2 S_2 S2 B 2 B_2 B2无交且 B 2 B_2 B2的半径小于 1 / 3 1/3 1/3

对于一般情形,存在半径小于 1 n + 2 \frac{1}{n+2} n+21的open ball B n + 1 B_{n+1} Bn+1 S n + 1 S_{n+1} Sn+1无交;

因为 ⋃ n ∈ N c l B n \bigcup_{n \in \mathbb{N}}cl B_n nNclBn非空(为了更加严谨,这个结果需要证明),于是 ∃ x ∈ c l B n , ∀ n \exists x \in clB_n,\forall n xclBn,n,那么 x x x一定也是Banach空间中的点;但是 B n B_n Bn S n S_n Sn无交,于是 x x x不属于任意 S n S_n Sn,所以
x ∉ ⋃ n ∈ N S n x \notin \bigcup_{n \in \mathbb{N}} S_n x/nNSn

这样我们就说明了 ∃ x ∈ X , x ∉ ⋃ n ∈ N S n \exists x \in X, x \notin \bigcup_{n \in \mathbb{N}} S_n xX,x/nNSn,这与 X = ⋃ n ∈ N S n X=\bigcup_{n \in \mathbb{N}} S_n X=nNSn矛盾。

Banach-Steinhaus定理(uniform boundedness principle)

假设 X X X是一个Banach空间, { A n } \{A_n\} {An}是可列个 X X X上的有界线性算子, ∀ x ∈ X \forall x \in X xX sup ⁡ n ≥ 1 ∥ A n x ∥ \sup_{n \ge 1} \left\| A_nx \right\| supn1Anx有界,则 sup ⁡ n ≥ 1 ∥ A n ∥ \sup_{n \ge 1} \left\| A_n \right\| supn1An有界;

证明思路
定义 S n = { x ∈ X : sup ⁡ k ≥ 1 ∥ A k x ∥ ≤ n } S_n = \{x \in X:\sup_{k \ge 1} \left\| A_kx \right\| \le n\} Sn={xX:k1supAkxn}因为有界线性算子等价于连续线性算子,所以 A n A_n An连续,因此 S n S_n Sn是闭集;并且
X = ⋃ n ≥ 1 S n X = \bigcup_{n \ge 1}S_n X=n1Sn

根据Baire’s Category Theorem, S n S_n Sn不是Baire first category set,于是存在一个 S l S_l Sl有closed ball子集 B ˉ ( x , r ) \bar B(x,r) Bˉ(x,r),考虑 y ∈ X y \in X yX,引入向量
z = x + r ∥ y ∥ y ∈ B ˉ ( x , r ) z = x+ \frac{r}{ \left\|y \right\|} y \in \bar B(x,r) z=x+yryBˉ(x,r)


∥ A n y ∥ = ∥ ∥ y ∥ r A n z − ∥ y ∥ r A n x ∥ ≤ ∥ y ∥ r ∥ A n z ∥ + ∥ y ∥ r ∥ A n x ∥ ≤ 2 l r ∥ y ∥ \left\| A_n y \right\|= \left\| \frac{\left\|y \right\|}{ r}A_n z - \frac{\left\|y \right\|}{ r}A_n x \right\| \le \frac{\left\|y \right\|}{ r}\left\| A_n z \right\|+\frac{\left\|y \right\|}{ r}\left\| A_n x \right\| \le \frac{2l}{r}\left\| y \right\| Any=ryAnzryAnxryAnz+ryAnxr2ly

因为 x , z ∈ B ˉ ( x , r ) ⊂ S l x,z \in \bar B(x,r) \subset S_l x,zBˉ(x,r)Sl,于是
sup ⁡ n ≥ 1 ∥ A n ∥ ≤ 2 l r \sup_{n \ge 1} \left\| A_n \right\| \le \frac{2l}{r} n1supAnr2l

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页