概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire's Category与Banach-Steinhaus定理的证明
写在前面
在随机微分方程那个系列中,我们在讨论Markov family的时候引入了Markov family的算子半群,这是一个在概率论与数理统计的理论中非常强大的分析工具。在随机分析中,算子半群可以用来分析Markov过程与Levy过程的性质,进而分析某些随机微分方程的解的构造;在统计计算的理论中,算子半群可以用来表达一种MCMC类的算法,这样就能把算法的收敛与误差分析化归为对算子半群的范数的讨论。所以我打算单独开一个系列,介绍概统中的算子半群。
Baire’s Category Theorem
Baire’s Category Theorem是泛函分析中的经典结果,我们先引入这个工具。
nowhere dense
(
X
,
∥
⋅
∥
)
(X,\left\| \cdot \right\|)
(X,∥⋅∥)是一个赋范线性空间,
S
S
S是它的子集;
∀
x
∈
X
,
ϵ
>
0
\forall x \in X,\epsilon>0
∀x∈X,ϵ>0,
B
(
x
,
ϵ
)
=
{
y
∈
X
:
∥
y
−
x
∥
<
ϵ
}
B(x,\epsilon)=\{y \in X:\left\| y -x \right\|<\epsilon \}
B(x,ϵ)={y∈X:∥y−x∥<ϵ}被称为
X
X
X中的open ball;
∀
x
∈
X
,
ϵ
>
0
\forall x \in X,\epsilon>0
∀x∈X,ϵ>0,
B
ˉ
(
x
,
ϵ
)
=
{
y
∈
X
:
∥
y
−
x
∥
≤
ϵ
}
\bar B(x,\epsilon)=\{y \in X:\left\| y -x \right\|\le \epsilon \}
Bˉ(x,ϵ)={y∈X:∥y−x∥≤ϵ}被称为
X
X
X中的closed ball;
称
S
S
S nowhere dense if and only if (in short, iff)
S
S
S的闭包(
c
l
S
cl S
clS)不包含任何open ball,另一种表述为任意open ball
B
B
B都有一个open ball子集
B
′
B'
B′,使得
S
∩
B
′
=
ϕ
S \cap B' = \phi
S∩B′=ϕ;
Baire first category set
在拓扑空间中,能被可列个nowhere dense集合的并表示的集合被称为Baire first category set;
Baire second category set
在拓扑空间中,能被可列个nowhere dense集合或者开集的并表示的集合被称为Baire second category set,或者不是Baire first category set的集合就是Baire second category set;
Baire’s Category Theorem
Banach空间不能表示成可列个nowhere dense集合的并(也就是说Banach空间不是Baire first category set,它是Baire second category set)
证明思路
用反证法,假设
X
X
X是Banach空间,
{
S
n
}
\{S_n\}
{Sn}是可列个nowhere dense集合,并且
X
=
⋃
n
∈
N
S
n
X = \bigcup_{n \in \mathbb{N}} S_n
X=n∈N⋃Sn
假设 B 0 = B ( 0 , 1 ) B_0=B(0,1) B0=B(0,1),因为 S 1 S_1 S1 nowhere dense,于是 ∃ B 1 ⊂ B 0 \exists B_1 \subset B_0 ∃B1⊂B0, B 1 B_1 B1是open ball并且 B 1 ∩ S 1 = ϕ B_1 \cap S_1 = \phi B1∩S1=ϕ;我们可以假设 B 1 B_1 B1的半径小于 1 / 2 1/2 1/2,如果 B 1 B_1 B1的半径大于 1 / 2 1/2 1/2,我们总是可以找到一个更小的open ball与 S 1 S_1 S1无交;
重复这个过程, S 2 S_2 S2 nowhere dense,于是存在 B 1 B_1 B1的open ball子集 B 2 B_2 B2使得 S 2 S_2 S2与 B 2 B_2 B2无交且 B 2 B_2 B2的半径小于 1 / 3 1/3 1/3;
对于一般情形,存在半径小于 1 n + 2 \frac{1}{n+2} n+21的open ball B n + 1 B_{n+1} Bn+1与 S n + 1 S_{n+1} Sn+1无交;
因为
⋃
n
∈
N
c
l
B
n
\bigcup_{n \in \mathbb{N}}cl B_n
⋃n∈NclBn非空(为了更加严谨,这个结果需要证明),于是
∃
x
∈
c
l
B
n
,
∀
n
\exists x \in clB_n,\forall n
∃x∈clBn,∀n,那么
x
x
x一定也是Banach空间中的点;但是
B
n
B_n
Bn与
S
n
S_n
Sn无交,于是
x
x
x不属于任意
S
n
S_n
Sn,所以
x
∉
⋃
n
∈
N
S
n
x \notin \bigcup_{n \in \mathbb{N}} S_n
x∈/n∈N⋃Sn
这样我们就说明了 ∃ x ∈ X , x ∉ ⋃ n ∈ N S n \exists x \in X, x \notin \bigcup_{n \in \mathbb{N}} S_n ∃x∈X,x∈/⋃n∈NSn,这与 X = ⋃ n ∈ N S n X=\bigcup_{n \in \mathbb{N}} S_n X=⋃n∈NSn矛盾。
Banach-Steinhaus定理(uniform boundedness principle)
假设 X X X是一个Banach空间, { A n } \{A_n\} {An}是可列个 X X X上的有界线性算子, ∀ x ∈ X \forall x \in X ∀x∈X, sup n ≥ 1 ∥ A n x ∥ \sup_{n \ge 1} \left\| A_nx \right\| supn≥1∥Anx∥有界,则 sup n ≥ 1 ∥ A n ∥ \sup_{n \ge 1} \left\| A_n \right\| supn≥1∥An∥有界;
证明思路
定义
S
n
=
{
x
∈
X
:
sup
k
≥
1
∥
A
k
x
∥
≤
n
}
S_n = \{x \in X:\sup_{k \ge 1} \left\| A_kx \right\| \le n\}
Sn={x∈X:k≥1sup∥Akx∥≤n}因为有界线性算子等价于连续线性算子,所以
A
n
A_n
An连续,因此
S
n
S_n
Sn是闭集;并且
X
=
⋃
n
≥
1
S
n
X = \bigcup_{n \ge 1}S_n
X=n≥1⋃Sn
根据Baire’s Category Theorem,
S
n
S_n
Sn不是Baire first category set,于是存在一个
S
l
S_l
Sl有closed ball子集
B
ˉ
(
x
,
r
)
\bar B(x,r)
Bˉ(x,r),考虑
y
∈
X
y \in X
y∈X,引入向量
z
=
x
+
r
∥
y
∥
y
∈
B
ˉ
(
x
,
r
)
z = x+ \frac{r}{ \left\|y \right\|} y \in \bar B(x,r)
z=x+∥y∥ry∈Bˉ(x,r)
则
∥
A
n
y
∥
=
∥
∥
y
∥
r
A
n
z
−
∥
y
∥
r
A
n
x
∥
≤
∥
y
∥
r
∥
A
n
z
∥
+
∥
y
∥
r
∥
A
n
x
∥
≤
2
l
r
∥
y
∥
\left\| A_n y \right\|= \left\| \frac{\left\|y \right\|}{ r}A_n z - \frac{\left\|y \right\|}{ r}A_n x \right\| \le \frac{\left\|y \right\|}{ r}\left\| A_n z \right\|+\frac{\left\|y \right\|}{ r}\left\| A_n x \right\| \le \frac{2l}{r}\left\| y \right\|
∥Any∥=∥∥∥∥r∥y∥Anz−r∥y∥Anx∥∥∥∥≤r∥y∥∥Anz∥+r∥y∥∥Anx∥≤r2l∥y∥
因为
x
,
z
∈
B
ˉ
(
x
,
r
)
⊂
S
l
x,z \in \bar B(x,r) \subset S_l
x,z∈Bˉ(x,r)⊂Sl,于是
sup
n
≥
1
∥
A
n
∥
≤
2
l
r
\sup_{n \ge 1} \left\| A_n \right\| \le \frac{2l}{r}
n≥1sup∥An∥≤r2l