函数局部有界性定理_泛函分析笔记(十四)Baire定理,Banach-Steinhaus定理

本文介绍了Baire定理及其应用,包括在Weierstrass函数中的应用,证明了连续但处处不可微函数的存在性。同时详细阐述了Banach-Steinhaus定理,讨论了一致有界性原理及其在数值求积公式的收敛性中的应用。
摘要由CSDN通过智能技术生成
  • 1. Baire 定理
    • 1.1. Baire定理的应用
  • 2. Banach-Steinhaus 定理(一致有界性原理)
    • 2.1. 推论及应用
      • 2.1.1. 应用:数值求积公式的收敛性

1. Baire 定理

Cantor 交集定理: X是完备的距离空间, 而

是X中满足下列性质的非空闭子集
组成的序列,他们满足

则存在

使得

(

,也就是集合中的最远距离)

也就是说如果这个集合序列越来越小,趋近于一个点的话,那么这些序列中无穷多个集合的交集就是只有这一个点。

Baire 定理: 设X是完备的距离空间,则两个等价性质成立: - 设

是X中的闭子集序列,且对所有的
,则有
  • 是X中的开子集序列,且对所有的

(int是集合内取点,也就是去除边界值。应该是 interior of a set 吧)

按照第一种描述的话,闭子集是集合中包含边界的子集(忘了就想想闭区间),然后这个闭子集序列如果内部都为空,也就是说都是只包含了边界,那么所有的集合的并集还是只包含了X的边界,他们的并集的内部是空的。

按照第二章描述的话,开子集是不包含任何边界的子集ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值