- 1. Baire 定理
- 1.1. Baire定理的应用
- 2. Banach-Steinhaus 定理(一致有界性原理)
- 2.1. 推论及应用
- 2.1.1. 应用:数值求积公式的收敛性
- 2.1. 推论及应用
1. Baire 定理
Cantor 交集定理: X是完备的距离空间, 而
是X中满足下列性质的非空闭子集
组成的序列,他们满足
则存在
使得
(
,也就是集合中的最远距离)
也就是说如果这个集合序列越来越小,趋近于一个点的话,那么这些序列中无穷多个集合的交集就是只有这一个点。
Baire 定理: 设X是完备的距离空间,则两个等价性质成立: - 设
是X中的闭子集序列,且对所有的
,则有
- 设
是X中的开子集序列,且对所有的则
(int是集合内取点,也就是去除边界值。应该是 interior of a set 吧)
按照第一种描述的话,闭子集是集合中包含边界的子集(忘了就想想闭区间),然后这个闭子集序列如果内部都为空,也就是说都是只包含了边界,那么所有的集合的并集还是只包含了X的边界,他们的并集的内部是空的。
按照第二章描述的话,开子集是不包含任何边界的子集ÿ