UA PHYS515 电磁理论II 静电场问题1 对称性与Image Charge Method
对称法与Image Charge Method的理论基础
在上一部分我们讨论了静电场问题的设定,如果 B ⃗ = 0 , H ⃗ = 0 \vec{B}=0,\vec{H}=0 B=0,H=0并且电场与电位移不随时间变化,我们称这样的问题叫静电学问题,在各向同性介质中, D ⃗ = ϵ E ⃗ \vec{D}=\epsilon \vec{E} D=ϵE, ϵ \epsilon ϵ是介电常数,我们需要求解的方程是著名的Poisson方程:
∇ 2 Φ = − 4 π ϵ ρ \nabla^2 \Phi = -\frac{4\pi}{\epsilon} \rho ∇2Φ=−ϵ4πρ
其中 Φ \Phi Φ是静电势, ρ \rho ρ是电荷密度, E ⃗ = − ∇ Φ \vec{E}=-\nabla \Phi E=−∇Φ,如果不存在自由电荷, ρ = 0 \rho = 0 ρ=0,则
∇ 2 Φ = Δ Φ = 0 \nabla^2 \Phi = \Delta \Phi= 0 ∇2Φ=ΔΦ=0
这就是同样很有名的Laplace方程,要求解这两种方程需要 Φ \Phi Φ或者 ∇ Φ \nabla \Phi ∇Φ的边界条件,我们在数学物理方法中学过,给定一组边界条件,Poisson方程的解存在唯一,这说明在解决一些对称性比较明显的问题时,我们总是可以用割补法在保证边界条件不变的情况下把复杂的静电场问题简化。这个结论就给了我们非常灵活的解题思路,物理学家认为既然解唯一,那么解题时的思考过程就不用那么严谨(之后我们会介绍数学上严谨的Green函数法),所以物理学家更愿意发挥天马行空的想象力简化问题求解方程。
例1:接地导电板外的自由电荷
问题A:假设x-y平面是一块接地的、厚度可以忽略不计的导电板,在 d ⃗ 1 = ( 0 , 0 , d ) \vec d_1=(0,0,d) d1=(0,0,d)的位置有一个电荷量为 q q q的正电荷,要计算空间中的电场 E ⃗ \vec{E} E。
这个问题的看上去就是一个高中题目,但实际上要硬解几乎是不可能的,因为空间中的电场实际上是两种电场的叠加:自由正电荷形成的电场、导电板上的引致电场。可以预见到导电板上的引致电场比较难直接计算,所以要硬解这个问题难度很大。
现在我们用割补法,因为Poisson方程只要边界条件一样,解就会一样,问题A中导电板接地,所以边界条件为
Φ ( x , y , 0 , t ) = 0 \Phi(x,y,0,t)=0 Φ(x,y,0,t)=0
现在我们构造与问题A具有相同边界条件的问题,记为问题B:假设在 d ⃗ 1 = ( 0 , 0 , d ) \vec d_1=(0,0,d) d1=(0,0,d)的位置有一个电荷量为 q q q的正电荷,在 d ⃗ 2 = ( 0 , 0 , − d ) \vec d_2 = (0,0,-d) d2=(0,0,−d)的位置有一个电荷量为 q q q的负电荷,则边界条件同样为
Φ ( x , y , 0 , t ) = 0 \Phi(x,y,0,t)=0 Φ(x,y,0,t)=0
问题B求解非常简单,它就是一个空间中两个电荷形成的电场,直接使用公式
Φ ( r ⃗ ) = q ∣ r ⃗ − d ⃗ 1 ∣ − q ∣ r ⃗ − d ⃗ 2 ∣ \Phi(\vec r)=\frac{q}{|\vec r-\vec d_1|}-\frac{q}{|\vec r - \vec d_2|} Φ(r)=∣r