UA PHYS515 电磁理论II 静电场问题1 对称性与Image Charge Method

本文介绍了如何利用对称法与Image Charge Method解决静电场问题,通过举例分析接地导电板外的自由电荷和均匀电场中的空心接地导电球情况,详细阐述了割补法的应用,如Image Charge Method,以简化复杂电场问题的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对称法与Image Charge Method的理论基础

在上一部分我们讨论了静电场问题的设定,如果 B ⃗ = 0 , H ⃗ = 0 \vec{B}=0,\vec{H}=0 B =0,H =0并且电场与电位移不随时间变化,我们称这样的问题叫静电学问题,在各向同性介质中, D ⃗ = ϵ E ⃗ \vec{D}=\epsilon \vec{E} D =ϵE ϵ \epsilon ϵ是介电常数,我们需要求解的方程是著名的Poisson方程:
∇ 2 Φ = − 4 π ϵ ρ \nabla^2 \Phi = -\frac{4\pi}{\epsilon} \rho 2Φ=ϵ4πρ

其中 Φ \Phi Φ是静电势, ρ \rho ρ是电荷密度, E ⃗ = − ∇ Φ \vec{E}=-\nabla \Phi E =Φ,如果不存在自由电荷, ρ = 0 \rho = 0 ρ=0,则
∇ 2 Φ = Δ Φ = 0 \nabla^2 \Phi = \Delta \Phi= 0 2Φ=ΔΦ=0

这就是同样很有名的Laplace方程,要求解这两种方程需要 Φ \Phi Φ或者 ∇ Φ \nabla \Phi Φ的边界条件,我们在数学物理方法中学过,给定一组边界条件,Poisson方程的解存在唯一,这说明在解决一些对称性比较明显的问题时,我们总是可以用割补法在保证边界条件不变的情况下把复杂的静电场问题简化。这个结论就给了我们非常灵活的解题思路,物理学家认为既然解唯一,那么解题时的思考过程就不用那么严谨(之后我们会介绍数学上严谨的Green函数法),所以物理学家更愿意发挥天马行空的想象力简化问题求解方程。

例1:接地导电板外的自由电荷

问题A:假设x-y平面是一块接地的、厚度可以忽略不计的导电板,在 d ⃗ 1 = ( 0 , 0 , d ) \vec d_1=(0,0,d) d 1=(0,0,d)的位置有一个电荷量为 q q q的正电荷,要计算空间中的电场 E ⃗ \vec{E} E

这个问题的看上去就是一个高中题目,但实际上要硬解几乎是不可能的,因为空间中的电场实际上是两种电场的叠加:自由正电荷形成的电场、导电板上的引致电场。可以预见到导电板上的引致电场比较难直接计算,所以要硬解这个问题难度很大。

现在我们用割补法,因为Poisson方程只要边界条件一样,解就会一样,问题A中导电板接地,所以边界条件为
Φ ( x , y , 0 , t ) = 0 \Phi(x,y,0,t)=0 Φ(x,y,0,t)=0

现在我们构造与问题A具有相同边界条件的问题,记为问题B:假设在 d ⃗ 1 = ( 0 , 0 , d ) \vec d_1=(0,0,d) d 1=(0,0,d)的位置有一个电荷量为 q q q的正电荷,在 d ⃗ 2 = ( 0 , 0 , − d ) \vec d_2 = (0,0,-d) d 2=(0,0,d)的位置有一个电荷量为 q q q的负电荷,则边界条件同样为
Φ ( x , y , 0 , t ) = 0 \Phi(x,y,0,t)=0 Φ(x,y,0,t)=0

问题B求解非常简单,它就是一个空间中两个电荷形成的电场,直接使用公式
Φ ( r ⃗ ) = q ∣ r ⃗ − d ⃗ 1 ∣ − q ∣ r ⃗ − d ⃗ 2 ∣ \Phi(\vec r)=\frac{q}{|\vec r-\vec d_1|}-\frac{q}{|\vec r - \vec d_2|} Φ(r )=r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值