UA PHYS515A 电磁理论IV 时变电磁场理论3 电磁场的能量守恒

本文探讨了时变电磁场的能量守恒原理,通过数学推导展示了电磁场的能量密度公式,并引入Poynting向量描述电磁能量的传播。通过能量守恒微分方程,解释了电磁场能量的损耗与电荷作用的关系。
摘要由CSDN通过智能技术生成

UA PHYS515A 电磁理论IV 时变电磁场理论3 电磁场的能量守恒

时变电磁场的传播成为电磁波,它可以携带能量,这一讲我们讨论电磁场的能量。回忆一下电荷守恒,麦克斯韦在推导他的方程组的时候,用电荷守恒修正了Ampere定律,他导出的微分形式的电荷守恒是
∂ ρ ∂ t + ∇ ⋅ J ⃗ = 0 \frac{\partial \rho}{\partial t}+\nabla \cdot \vec J = 0 tρ+J =0

与电荷类似,在无外源的条件下,电磁场的能量也是一个守恒量,我们可以类似电荷守恒的思路导出电磁场能量守恒的微分方程。


假设空间中 r ⃗ ′ \vec r' r 的位置存在scalar potential为 Φ ( r ⃗ ′ ) \Phi(\vec r') Φ(r )的电场,我们把一个电荷 δ ρ ( r ⃗ ′ ) \delta \rho(\vec r') δρ(r )从无穷远处移到 r ⃗ ′ \vec r' r 的位置需要做功
δ W ( r ⃗ ′ ) = Φ ( r ⃗ ′ ) δ ρ ( r ⃗ ′ ) \delta W(\vec r')=\Phi(\vec r')\delta \rho(\vec r') δW(r )=Φ(r )δρ(r )

这里的 δ \delta δ表示变分,用 V V V表示全空间,则
δ W = ∫ V Φ ( r ⃗ ′ ) δ ρ ( r ⃗ ′ ) d 3 r ⃗ ′ \delta W = \int_V \Phi(\vec r')\delta \rho(\vec r') d^3 \vec r' δW=VΦ(r )δρ(r )d3r

下面我们尝试移除与电磁场无关的量,根据Gauss定理,
ρ = 1 4 π ∇ ⋅ E ⃗ δ ρ = 1 4 π ∇ ⋅ δ E ⃗ \rho = \frac{1}{4 \pi }\nabla \cdot \vec E \\ \delta \rho = \frac{1}{4 \pi } \nabla \cdot \delta \vec E ρ=4π1E δρ=4π1δE

对下面第二个等号的第一项用Gauss散度定理,得到的曲面积分为0(只要 S ( V ) S(V) S(V)足够大)
δ W = ∫ V Φ ( r ⃗ ′ ) 1 4 π ∇ ⋅ δ E ⃗ ( r ⃗ ′ ) d 3 r ⃗ ′ = − 1 4 π ∫ V [ ∇ ⋅ ( δ E ⃗ Φ ) − δ E ⃗ ⋅ ∇ Φ ] d 3 r ⃗ ′ = − 1 4 π ∫ V δ E ⃗ ⋅ ∇ Φ d 3 r ⃗ ′ = 1 4 π ∫ V δ E ⃗ ⋅ E ⃗ d 3 r ⃗ ′ \delta W = \int_V \Phi(\vec r') \frac{1}{4 \pi } \nabla \cdot \delta \vec E(\vec r')d^3 \vec r' \\ = -\frac{1}{4 \pi} \int_V[\nabla \cdot (\delta \vec E \Phi)-\delta \vec E \cdot \nabla \Phi]d^3 \vec r' \\ = - \frac{1}{4 \pi}\int_V \delta \vec E \cdot \nabla \Phi d^3 \vec r' = \frac{1}{4 \pi} \int_V \delta \vec E \cdot \vec E d^3 \vec r' δW=VΦ(r )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值