1.电荷计算公式
根据电荷密度的定义,如果已知某空间区域V中的电荷体密度,则区域V中的总电量q为
q
=
∫
V
ρ
(
r
⃗
)
d
V
q=\int_{V}\rho(\vec{r})dV
q=∫Vρ(r)dV
如果已知某空间曲面S上的电荷面密度,则该曲面上的总电量q 为
q
=
∫
S
ρ
S
(
r
⃗
)
d
S
q=\int_{S}\rho_S(\vec{r})dS
q=∫SρS(r)dS
如果已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为
q
=
∫
C
ρ
l
(
r
⃗
)
d
l
q=\int_{C}\rho_l(\vec{r})dl
q=∫Cρl(r)dl
2.电流公式
i
=
lim
Δ
t
→
0
Δ
q
Δ
t
=
d
q
d
t
i=\lim\limits_{\Delta t\rightarrow 0}\frac{\Delta q}{\Delta t}=\frac{dq}{dt}
i=Δt→0limΔtΔq=dtdq
电流密度矢量
J
⃗
\vec{J}
J
J
⃗
=
e
⃗
n
lim
Δ
S
→
0
Δ
i
Δ
S
=
e
⃗
n
d
i
d
S
\vec{J}=\vec{e}_n\lim\limits_{\Delta S\rightarrow 0}\frac{\Delta i}{\Delta S}=\vec{e}_n\frac{di}{dS}
J=enΔS→0limΔSΔi=endSdi
流过任意曲面S 的电流为
i
=
∫
S
J
⃗
⋅
d
S
⃗
i=\int_S \vec{J}\cdot d\vec{S}
i=∫SJ⋅dS
面电流密度矢量
J
⃗
S
\vec{J}_S
JS
J
⃗
S
=
e
⃗
t
lim
Δ
l
→
0
Δ
i
Δ
l
=
e
⃗
t
d
i
d
l
\vec{J}_S=\vec{e}_t\lim\limits_{\Delta l\rightarrow 0}\frac{\Delta i}{\Delta l}=\vec{e}_t\frac{di}{dl}
JS=etΔl→0limΔlΔi=etdldi
通过薄导体层上任意有向曲线
l
⃗
\vec{l}
l的电流为
i
=
∫
l
J
⃗
S
⋅
(
e
⃗
n
×
d
l
⃗
)
i=\int_l \vec{J}_S\cdot (\vec{e}_n\times d\vec{l})
i=∫lJS⋅(en×dl)
3.电荷守恒定律
电流连续性方程
积分形式:
∮
S
J
⃗
⋅
d
S
=
−
d
q
d
t
=
−
d
d
t
∫
V
ρ
d
V
\oint_S \vec{J}\cdot dS=-\frac{dq}{dt}=-\frac{d}{dt}\int_V\rho dV
∮SJ⋅dS=−dtdq=−dtd∫VρdV
(流出闭合面S的电流等于体积V内单位时间所减少的电荷量)
微分形式:
∇
⋅
J
⃗
=
−
∂
ρ
∂
t
\nabla\cdot\vec{J}=-\frac{\partial \rho}{\partial t}
∇⋅J=−∂t∂ρ
4.库仑(Coulomb)定律
真空中静止点电荷 q1 对 q2 的作用力:
F
⃗
12
=
e
⃗
R
q
1
q
2
4
π
ε
0
R
12
2
=
q
1
q
2
R
⃗
12
4
π
ε
0
R
12
3
\vec{F}_{12}=\vec{e}_R\frac{q_1q_2}{4\pi\varepsilon_0R^2_{12}}=\frac{q_1q_2\vec{R}_{12}}{4\pi\varepsilon_0R^3_{12}}
F12=eR4πε0R122q1q2=4πε0R123q1q2R12
电场强度
定义式
E
⃗
(
r
⃗
)
=
lim
q
0
→
0
F
⃗
(
r
⃗
)
q
0
\vec{E}(\vec{r})=\lim\limits_{q_0\rightarrow 0}\frac{\vec{F}(\vec{r})}{q_0}
E(r)=q0→0limq0F(r)
静电场的散度和旋度
静电场的散度(微分形式):
∇
⋅
E
⃗
(
r
⃗
)
=
ρ
(
r
⃗
)
ε
0
\nabla\cdot \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_0}
∇⋅E(r)=ε0ρ(r)(推导见书P43)
静电场的高斯定理(积分形式):
∮
S
E
⃗
(
r
⃗
)
⋅
d
S
⃗
=
1
ε
0
∫
V
ρ
(
r
⃗
)
d
V
\oint_S \vec{E}(\vec{r})\cdot d\vec{S}=\frac{1}{\varepsilon_0}\int_V\rho(\vec{r})dV
∮SE(r)⋅dS=ε01∫Vρ(r)dV
高斯定理表明:静电场是有源场,电场线起始于正电荷,终止于负电荷。
静电场的旋度(微分形式):
∇
×
E
⃗
(
r
⃗
)
=
0
\nabla\times \vec{E}(\vec{r})=0
∇×E(r)=0
静电场的环路定理(积分形式):
∫
c
E
⃗
(
r
⃗
)
⋅
d
l
⃗
=
0
\int_{c}\vec{E}(\vec{r})\cdot d\vec{l}=0
∫cE(r)⋅dl=0
环路定理表明:静电场是无旋场,是保守场,电场力做功和路径无关
5.安培力定律
真空中的载流回路C1对 载流回路C2的作用力
F
⃗
12
=
μ
0
4
π
∫
C
2
∫
C
1
I
2
d
l
⃗
2
×
(
I
1
d
l
⃗
1
×
R
⃗
12
)
R
12
3
\vec{F}_{12}=\frac{\mu_0}{4\pi}\int_{C_2}\int_{C_1}\frac{I_2d\vec{l}_2\times(I_1d\vec{l}_1\times\vec{R}_{12})}{{R}_{12}^3}
F12=4πμ0∫C2∫C1R123I2dl2×(I1dl1×R12)
磁感应强度
根据安培力定律,有
F
⃗
12
=
∫
C
2
I
2
d
l
⃗
2
×
μ
0
4
π
∫
C
1
(
I
1
d
l
⃗
1
×
R
⃗
12
)
R
12
3
=
∫
C
2
I
2
d
l
⃗
2
×
B
⃗
1
(
r
⃗
2
)
\vec{F}_{12}=\int_{C_2}I_2d\vec{l}_2\times\frac{\mu_0}{4\pi}\int_{C_1}\frac{(I_1d\vec{l}_1\times\vec{R}_{12})}{{R}_{12}^3}=\int_{C_2}I_2d\vec{l}_2\times\vec{B}_1(\vec{r}_2)
F12=∫C2I2dl2×4πμ0∫C1R123(I1dl1×R12)=∫C2I2dl2×B1(r2)
其中
B
⃗
1
(
r
⃗
2
)
=
μ
0
4
π
∫
C
1
(
I
1
d
l
⃗
1
×
R
⃗
12
)
R
12
3
\vec{B}_1(\vec{r}_2)=\frac{\mu_0}{4\pi}\int_{C_1}\frac{(I_1d\vec{l}_1\times\vec{R}_{12})}{{R}_{12}^3}
B1(r2)=4πμ0∫C1R123(I1dl1×R12)
电流
I
1
I_1
I1在电流元
I
2
d
l
⃗
2
I_2d\vec{l}_2
I2dl2处产生的磁感应强度
磁场的散度和旋度
恒定场的散度(微分形式):
∇
⋅
B
⃗
(
r
⃗
)
=
0
\nabla\cdot\vec{B}(\vec{r})=0
∇⋅B(r)=0在这里插入代码片
磁通连续性原理(积分形式):
∫
S
B
⃗
(
r
⃗
)
⋅
d
S
⃗
=
0
\int_S\vec{B}(\vec{r})\cdot d\vec{S}=0
∫SB(r)⋅dS=0
磁通连续性原理表明:恒定磁场是无源场,磁场线是无起点和终点的闭合曲线
恒定磁场的旋度(微分形式):
∇
×
B
⃗
(
r
⃗
)
=
μ
0
J
⃗
(
r
⃗
)
\nabla\times\vec{B}(\vec{r})=\mu_0\vec{J}(\vec{r})
∇×B(r)=μ0J(r)
安培环路定理(积分形式):
∮
C
B
⃗
(
r
⃗
)
⋅
d
l
⃗
=
μ
0
∫
S
J
⃗
(
r
⃗
)
⋅
d
S
⃗
=
μ
0
I
\oint_{C}\vec{B}(\vec{r})\cdot d\vec{l}=\mu_0\int_{S}\vec{J}(\vec{r})\cdot d\vec{S}=\mu_0I
∮CB(r)⋅dl=μ0∫SJ(r)⋅dS=μ0I
安培环路定理表明:恒定磁场是有旋场,是非保守场,电流是磁场的漩涡源