光,特别是可见光,作为一种特殊的电磁波,它的传播除了满足电磁波传播的规律外,还有一些特有的现象,这一讲介绍光的色散(dispersion)、吸收(absorption)与散射(scattering),色散是初中物理就介绍过的现象,当白光通过三棱镜时可以分解出不同颜色的光,这是因为不同频率的光在三棱镜中的折射率不同;吸收指的是光通过介质进行传播的时候,所携带的能量被介质吸收从而导致光强衰减的现象;散射这种现象也比较好理解,虽然我们画光路图的时候把光画成直线,但这并不代表只有在直线上才能观察到光,这就是光的散射造成的。这三种现象本质上都是光与介质材料的交互作用,下面介绍分析这些交互作用的物理模型。
Lorentz Classical Electron Gas Model
Lorentz认为原子(atom)可以看成是由位于中心的原子核(nucleus)与围绕原子核的电子云(electron gas)组成的,当光作用在原子上时,电子云受到电磁场的作用会发生变形(distorted);他觉得这个时候电子云的运动就应该像弹簧一样,在光的作用下会偏离原子核,但随着电磁场的波动被原子核拉回,在单一方向上,电子的运动可以用振动方程给出:
m e x ¨ = − k e x − m e γ x ˙ + e E 0 e − i w t m_e \ddot{x} = -k_e x-m_e \gamma \dot{x}+eE_0e^{-iwt} mex¨=−kex−meγx˙+eE0e−iwt
其中 m e m_e me是电子的质量,其中 − k e x -k_ex −kex类比弹簧的恢复力,在电子云中是电子做圆周运动的向心力 m e w e 2 x m_ew_e^2x mewe2x, w e w_e we被称为电子云的自有频率;上式中第二个减项是damping,可以理解为与速度成正比的摩擦力;第三项被称为light wave( x x x方向上的分量);这个振动方程的通解为
x = x 0 e − i w t x = x_0e^{-iwt} x=x0e−iwt
代入到原方程中可以求出 x 0 x_0 x0;在 ( x , y , z ) (x,y,z) (x,y,z)三个方向上,我们都可以列出以上的振动方程并根据通解得到振动的位移表达式,记这个位移为 r ⃗ \vec r r,
r ⃗ = e E ⃗ / m e w 0 2 − w 2 − i w γ \vec r = \frac{e \vec E/m_e}{w_0^2-w^2-iw\gamma} r=w02−w2−iwγeE/me
由此可以计算电子的dipole moment:
p ⃗ = e r ⃗ \vec p = e \vec r p=er
如果电子云中有 N N N个电子,那么这团电子云的polarization为
P ⃗ = N p ⃗ = N e r ⃗ = N e 2 E ⃗ m e ( w 0 2 − w 2 − i γ w ) = χ e ϵ 0 E ⃗ \vec P = N\vec p = Ne \vec r = \frac{Ne^2 \vec E}{m_e(w_0^2-w^2-i\gamma w)}=\chi_e \epsilon_0 \vec E P=Np=Ner=me(w02−w2−iγw)Ne2E=χeϵ0E
其中 E ⃗ \vec E E是光的电场强度, n = 1 + χ e n=\sqrt{1+\chi_e} n=1+χe是折射率(一般而言是一个复数)
n = n r + i n i n 2 = 1 + χ e = 1 + N e 2 m e ϵ 0 ( w 0 2 − w 2 − i γ w ) n = n_r+in_i \\ n^2 = 1+\chi_e = 1+ \frac{Ne^2}{m_e\epsilon_0(w_0^2-w^2-i\gamma w)} n=nr+inin2=1+χe=1+meϵ0(w02−w2−iγw)Ne2
由此可以求出折射率的实部与虚部,并确定折射率的表达式:
n = 1 + N e 2 m e ϵ 0 ( w 0 2 − w 2 − i γ w ) n = \sqrt{1+ \frac{Ne^2}{m_e\epsilon_0(w_0^2-w^2-i\gamma w)}} n=1+meϵ0(w02−w2−iγw)Ne2
其中 N , w 0 , γ N,w_0,\gamma N,w0,γ与介质本身的性质有关,而折射率则是入射光的角频率 w w w的函数,这就是散射发生的理论基础:介质对不同频率的入射光具有不同的折射率。
Helmholtz方程与广义欧姆定律
现在我们写出电磁波在介质中传播的麦克斯韦方程,同样假设没有source,那么
∇ ⋅ E ⃗ = 0 ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ + 1 c ∂ B ⃗ ∂ t = 0 ∇ × B ⃗ − μ ϵ c ∂ E ⃗ ∂ t = 4 π μ c J ⃗ \nabla \cdot \vec{E} = 0\\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}+\frac{1}{c}\frac{\partial \vec{B}}{\partial t}=0 \\ \nabla \times \vec{B}-\frac{\mu \epsilon}{c}\frac{\partial \vec{E}}{\partial t} = \frac{4 \pi \mu}{c} \vec J ∇⋅E=0