物理光学10 相干光与相干性

本文深入探讨了物理光学中的相干性概念,包括相干程度、空间相干性和时间相干性。通过van Cittert-Zernike定理解释了如何计算空间中任意两点的相干性,并阐述了相干时间与光源频宽的关系,为理解干涉现象提供了关键理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第六讲介绍干涉的基本原理时,我们提到了coherent light(同调光或者相干光)的概念,如果两列光的初始相位差为0,就称这两列光是相干光,这是它们能干涉的必要条件。这一讲我们深入讨论相干光的性质。


相干性的概念

考虑从光源 S 1 , S 2 S_1,S_2 S1,S2发出的两列光:
E ⃗ 1 = E ⃗ 10 e i ( k ⃗ 1 ⋅ r ⃗ 1 − w t + ϕ 1 ) E ⃗ 2 = E ⃗ 20 e i ( k ⃗ 2 ⋅ r ⃗ 2 − w t + ϕ 2 ) \vec E_1 = \vec E_{10}e^{i(\vec k_1 \cdot \vec r_1-wt+\phi_1)} \\ \vec E_2 = \vec E_{20} e^{i(\vec k_2 \cdot \vec r_2 - wt+\phi_2)} E 1=E 10ei(k 1r 1wt+ϕ1)E 2=E 20ei(k 2r 2wt+ϕ2)

其中 P P P是观察者的位置, r ⃗ 1 = S 1 P → , r 2 = S 2 P → \vec r_1 = \overrightarrow{S_1P},r_2=\overrightarrow{S_2P} r 1=S1P ,r2=S2P ,在 P P P点处观察到的光的强度为
I = ⟨ ∣ E ⃗ 1 + E ⃗ 2 ∣ 2 ⟩ T = ⟨ ∣ E ⃗ 1 ∣ 2 ⟩ T ⏟ I 1 + ⟨ ∣ E ⃗ 2 ∣ 2 ⟩ T ⏟ I 2 + 2 R e ⟨ E ⃗ 1 ⋅ E ⃗ 2 ∗ ⟩ T ⏟ i n t e r f e r e n c e I= \langle |\vec E_1+\vec E_2|^2 \rangle_T=\underbrace{\langle |\vec E_1|^2 \rangle_T}_{I_1}+\underbrace{\langle |\vec E_2|^2 \rangle_T}_{I_2}+\underbrace{2Re \langle \vec E_1 \cdot \vec E_2^* \rangle_T}_{interference} I=E 1+E 22T=I1 E 12T+I2 E 22T+interference 2ReE 1E 2T

⟨ ⋅ ⟩ T \langle \cdot \rangle_T T表示某个物理量在一段时间内的平均值:
⟨ f ( t ) ⟩ T = lim ⁡ T → ∞ 1 T ∫ 0 T f ( t ) d t \langle f(t) \rangle_T = \lim_{T \to \infty} \frac{1}{T}\int_0^T f(t)dt f(t)T=TlimT10Tf(t)dt

记干涉项为
Γ 12 = 2 R e ⟨ E ⃗ 1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值