在第六讲介绍干涉的基本原理时,我们提到了coherent light(同调光或者相干光)的概念,如果两列光的初始相位差为0,就称这两列光是相干光,这是它们能干涉的必要条件。这一讲我们深入讨论相干光的性质。
相干性的概念
考虑从光源 S 1 , S 2 S_1,S_2 S1,S2发出的两列光:
E ⃗ 1 = E ⃗ 10 e i ( k ⃗ 1 ⋅ r ⃗ 1 − w t + ϕ 1 ) E ⃗ 2 = E ⃗ 20 e i ( k ⃗ 2 ⋅ r ⃗ 2 − w t + ϕ 2 ) \vec E_1 = \vec E_{10}e^{i(\vec k_1 \cdot \vec r_1-wt+\phi_1)} \\ \vec E_2 = \vec E_{20} e^{i(\vec k_2 \cdot \vec r_2 - wt+\phi_2)} E1=E10ei(k1⋅r1−wt+ϕ1)E2=E20ei(k2⋅r2−wt+ϕ2)
其中 P P P是观察者的位置, r ⃗ 1 = S 1 P → , r 2 = S 2 P → \vec r_1 = \overrightarrow{S_1P},r_2=\overrightarrow{S_2P} r1=S1P,r2=S2P,在 P P P点处观察到的光的强度为
I = ⟨ ∣ E ⃗ 1 + E ⃗ 2 ∣ 2 ⟩ T = ⟨ ∣ E ⃗ 1 ∣ 2 ⟩ T ⏟ I 1 + ⟨ ∣ E ⃗ 2 ∣ 2 ⟩ T ⏟ I 2 + 2 R e ⟨ E ⃗ 1 ⋅ E ⃗ 2 ∗ ⟩ T ⏟ i n t e r f e r e n c e I= \langle |\vec E_1+\vec E_2|^2 \rangle_T=\underbrace{\langle |\vec E_1|^2 \rangle_T}_{I_1}+\underbrace{\langle |\vec E_2|^2 \rangle_T}_{I_2}+\underbrace{2Re \langle \vec E_1 \cdot \vec E_2^* \rangle_T}_{interference} I=⟨∣E1+E2∣2⟩T=I1
⟨∣E1∣2⟩T+I2
⟨∣E2∣2⟩T+interference
2Re⟨E1⋅E2∗⟩T
注: ⟨ ⋅ ⟩ T \langle \cdot \rangle_T ⟨⋅⟩T表示某个物理量在一段时间内的平均值:
⟨ f ( t ) ⟩ T = lim T → ∞ 1 T ∫ 0 T f ( t ) d t \langle f(t) \rangle_T = \lim_{T \to \infty} \frac{1}{T}\int_0^T f(t)dt ⟨f(t)⟩T=T→∞limT1∫0Tf(t)dt
记干涉项为
Γ 12 = 2 R e ⟨ E ⃗ 1