1背景介绍
1.1摘要
本论文聚焦于微电网中的能量失衡管理问题,并从电力市场的角度进行研究。与传统电力网不同,微电网可从可再生能源(RES)如太阳能电池板或风力涡轮机等获得额外能源。然而,来自RES的随机输入给平衡供需带来困难。本研究提出了一种新的定价方案,可以针对这种间歇性功率输入提供鲁棒性。所提出的方案考虑了市场边际成本和边际收益存在不确定性的可能性,利用了有关电力供应、电力需求和失衡能量的所有可用信息。使用H∞性能指数评估方案的参数。结果表明,由于其凸性,可以通过解决线性矩阵不等式问题高效地计算出该方案的参数。在比较现有区域控制误差定价方案的情况下,给出了模拟实例,以展示所提出的方案的优秀表现。
1.2引言
价格是能源市场行为的重要因素,与能源消费、能源管理、负荷控制等密切相关。定价方案可用于平衡能源资源的变化速率。在电力市场中,电力需求和供应与市场价格相关:从消费者的角度来看,当边际效益高于价格时,需求增加/减少;从供应商的角度来看,当边际成本低于价格时,供应增加/减少。对于一个有效的定价方案,改变市场价格可以控制能量失衡。
许多研究从系统角度考虑了电力市场行为,即通过检查电力市场动态来进行研究。一般来说,电力市场动态至少包括电力需求动态和电力供应动态。当涉及到能量储存时,电力市场模型也包括电力储存动态。为了平衡能量供给和需求,驱动能量存储器达到零,已经研究了称为区域控制误差(ACE)定价的定价方案。ACE定价方案利用关于能量失衡的反馈控制价格变化的速率。从控制理论的术语来看,这个ACE定价方案是一个动态定价控制器。
在本文中,我们特别关注微电网的电力市场,这与现有研究 [5]-[7]所考虑的情境不同。微电网也被称为分布式资源岛屿系统,它们被定义为“包括当地和/或区域电能系统的所有有意义的岛屿系统” [9]。在本研究中,微电网可以是任何智能设施或单元,通过高效使用能源来维持其智能功能,并可从当地可再生能源来源(例如太阳能电池板或风力涡轮机)获得额外的功率输入。在这种情况下,与只从电力公司等供应商获取电力输入的情况 [5]和[6]不同,消费者的总体电力供应有所变化。
尽管微电网可以高效地利用能源,但通过使用可再生能源的一个重要挑战是网络的间歇性(或随机、波动性)电力输入 [10]。这种间歇性的属性是由于不可预测的天气条件造成的,在能源管理方面,它导致平衡电力需求和电力供应变得困难。传统上,ACE定价方案 [5],[6]控制价格变化的速率,使得速率与失衡能量的负值成比例,通过这样做可以有效地管理失衡能量。在本研究中,我们揭示出当涉及到额外的间歇性电力输入时,ACE的性能会下降。因此,需要一种能够抵御波动性电力输入的定价方案。
本文拓展了[5]-[8]中所研究的电力市场模型,将边际效益和边际成本的不确定性纳入到模型中,进而形成一种随机电力系统。本文提出一种新的模糊插值技术 [11] 用于电量失衡管理,并采用了 H∞ 性能指数来对抗可再生能源波动带来的不确定性的影响[12-13]。该定价方案的设计是在所有可能的扰动下(即不确定性和波动效应),使得电量失衡小于一个固定的衰减水平。然后可以通过解决线性矩阵不等式 (LMI) [13] 来获得定价参数,该方法具有高效计算的优势 [14]。
本文的主要贡献如下:我们从系统角度提出了一种定价设计,允许扩展到更复杂的电力市场系统;与现有的定价方案相比 [5],[6],我们的方案更加通用和鲁棒,因为它考虑到了各种干扰,特别是可再生能源的不确定性和波动效应。基于所提出的方法,发现价格震荡在平衡能量过剩或能量不足方面起着重要作用。仿真结果表明,所提出的方案在传统设置和本文研究的情况下均优于现有的 ACE 定价方案。
本文的其余部分组织如下。第二节制定了电力市场动态,并扩展了[5]和[6]中的模型,以包括市场系统干扰。拟议的定价方案详见第三节。仿真结果载于第四节。最后,第五节对本文进行了总结。
2.基本原理
备注1:通常在实际场景中部署基于价格的控制器,例如ACE和提出的定价方案,需要使用从底层电力系统中提取的其他知识。例如,如果一个电力系统使用由3阶通量衰减模型或4阶两轴模型建模的同步机,那么需要将“平均频率偏差”从机器添加到市场动态中作为不平衡能量的重要测量值[16]。然而,这样的知识依赖于明确的电力系统结构,相应的数学公式不在本文的范围之内。我们建议读者参考[6]和[16]以获取有关电力系统与市场动态相互连接的相关讨论。在[6]中,研究了与市场动态相互连接的自动电压调节器模型。在[16]中,使用新英格兰39母线测试系统(包括发电机/涡轮机/调速器动态)进一步研究了这种相互连接。
备注2:微电网通常具有储能能力,并且要求维持储存能量e(t)在某个特定的能量水平以促进普通和紧急电力使用[20]。对于具有储能系统的微电网,考虑e(t)→q>0更为合理,其中q代表所需的能量水平。这一方面可以通过变量转换(即e(t)= e(t)- q)来包含在我们提出的方案中,如下所示。在(1)中,反馈项ke(t)被替换为ke(t),因为现在引入了未达到所需能量水平q时的额外成本,即e(t)≠ 0。由于e(t)与e(t)相差一个常数项,它们具有相同的动态e(t)= e(t)(如(6)所示)。对于模糊规则中的前提变量、(14)中的增广状态c(t)和(19)中的系统输出z(t),e(t)取代e(t)的作用。可以发现,变量转换会导致(29)中相同的LMI约束条件,唯一的区别在于“失衡能量”的解释。在这种配置中,如果未维持所需工作水平q的存储能量e(t),或者等效地,e(t)≠ 0,则能量将失衡。
备注3:当微电网网络配备能源管理系统(EMS)时,我们提出的方案经过适当修改后变成了集中式设计。对于这种集中式配置,每个微电网可以连接到另一个微电网,从而收集微电网的能量状态信息,并用于实现特定的网络性能目标[21]。在这种情况下,EMS从整个网络化系统的角度功能。但是,网络规模应该合理,以实现高效的能源管理,并且所提出的定价方案需要进一步修改,以包括微电网之间的交互关系。相反,当一个微电网仅连接到传统电网并且EMS在微电网范围内操作时,在分散式配置中可以直接使用提出的定价方案。
3.完整代码获取
4.运行结果分析