双层优化入门(1)—基本原理与求解方法(附matlab代码)

文章介绍了双层优化问题的概念、特点和一个简单的线性双层优化问题示例。通过迭代法求解过程中遇到无法收敛的情况,进而引入KKT条件将双层优化转换为单层问题以找到解决方案。对于线性双层优化,通过探讨不同的KKT乘数情况,展示了如何构建和求解单层优化模型。
摘要由CSDN通过智能技术生成

1.介绍

        双层优化问题(Bilevel Programming Problems),也被称为双层规划,最早由Stackelberg与1934年在经济学相关研究中提出,因此也被称为Stackelberg问题。

        双层规划问题一般具有层次性、独立性、冲突性、优先性和自主性等特点:

        1)层次性

        优化时是分层管理的形式,下层优化服从上层优化,但下层优化有相对的自主权。

        2)独立性

        各层决策者各自控制一部分决策变量,以优化各自的目标。

        3)冲突性

        各层决策者有目标函数各不相同,且这些目标往往是相互矛盾的。

        4)优先性

        上层决策者优先做出决策,下层决策者在选择策略时,不能改变上层的决策。
        5)自主性

        上层的决策可能影响下层的行为,因而部分地影响下层目标的实现,但上层不能完全控制下层的选择行为,在上层决策允许范围内,下层有自主决策权。
        按照上下层优化的形式不同又可以分为线性双层优化以及非线性双层优化问题。当双层优化问题中所有目标函数和约束条件均为线性时,即为线性双层优化,否则就是非线性双层优化问题。其中双层优化的基本形式可描述为:

        其中,x和y是上层优化的决策变量,但x在下层优化中是参数。所以,双层优化模型是一个优化问题受制于另一个优化问题的模型。

2.问题分析

        下面是一个简单的线性双层优化问题:

        上下层优化的目标函数和约束条件均为线性,该问题为线性双层优化问题,
        为说明原理,按照上下层优化迭代的方式进行求解。
        1)第一次迭代
        首先不考虑下层优化的决策,上层优化求出最优解为 x1*=6 y1=8 ,上层最优目标函数为-22 ,将 x1*=6 带入下层优化中,求出 y1*=12 ,下层最优目标函数为-12
        2)第二次迭代
        将 y1*=12 带入上层优化中,此时上层优化的两个约束条件互相冲突,上层优化无最优解。 迭代无法收敛,是否意味着这个双层优化问题无解?很明显不是的,实际上这个问题存在最优解 x=8 y=6 ,上层优化最优目标函数值为 -20

matlab代码:

%% 清空
clc
clear
close all
warning off
%% 采用迭代方法进行求解
x=sdpvar(1);
y=sdpvar(1);
Constraints1=[2*x-3*y >= -12 , x+y <= 14 , x>=0 , y>=0];
objective1=-x-2*y;
objective2=-y;
ops=sdpsettings('verbose', 0 , 'solver', 'cplex');
result=optimize(Constraints1,objective1,ops);
if result.problem==0
    disp(['第一次迭代最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
    disp(['第一次迭代最优函数值=',num2str(value(objective1))])
end
x_dot=zeros(1,100);
y_dot=zeros(1,100);
x_dot(1)=value(x);
for k=1:10
    Constraints2=[-3*x+y <= -3 , 3*x+y <= 30 , x==x_dot(k) , x>=0 , y>=0];
    result=optimize(Constraints2,objective2,ops);
    y_dot(k)=value(y);
    Constraints1=[2*x-3*y >= -12 , x+y <= 14 , y==y_dot(k) , x>=0 , y>=0];
    result1=optimize(Constraints1,objective1,ops);
    x_dot(k+1)=value(x);
    if result1.problem || result.problem
        disp('迭代无法收敛')
        break
    end
end

        运行结果:

 3.双层优化求解方法

        上面的问题是一个小规模线性双层优化问题,通过迭代也无法求出问题的解,实际我们要解决的问题一般都不会这么简单,通常规模比较大,或者模型中存在非线性,一般来说很难通过简单的迭代法进行求解,需要考虑其他方法。实际上,双层优化问题是一个 NP 难问题,通常采用的方式是利用 KKT(Karush-Kuhn-Tucker) 条件将双层优化转换为单层优化问题。假设一个优化问题是如下的形式:

定义拉格朗日函数为:

        其中,λ j g j( x ) = 0 对应的拉格朗日乘数,  uk是hk(x)<=0   对应的拉格朗日乘数,那么该优化问题取得最优解的必要条件( 也就是 KKT 条件 ) 为:

以上面提到的线性双层优化问题为例,其下层优化的拉格朗日函数为: 

KKT 方程组如下:

将下层优化的 KKT 条件添加到上层优化问题中,就将双层优化问题转换为了单层优化问题:

        对于该问题,可以分三种情况讨论:

        1) u1 =0,模型可以简化为:

        2) u1∈(0,1)(1,+∞),模型可以简化为:

         3) u1=1,模型可以简化为:

matlab代码: 

%% 清空
clc
clear
close all
warning off
%% u1=0
x=sdpvar(1);
y=sdpvar(1);
Constraints1=[2*x-3*y >= -12 , x+y <= 14 , x>=0 , y>=0 , -3*x+y <= -3 , 3*x+y == 30 ,];
objective=-x-2*y;
ops=sdpsettings('verbose', 0 , 'solver', 'cplex');
result1=optimize(Constraints1,objective,ops);
disp('***********u1=0时的最优解和最优函数值************')
if result1.problem==0
    disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
    disp(['最优函数值=',num2str(value(objective))])
else
    disp('无最优解')
end

%% u1∈(0,1)∪(1,+∞)
x=sdpvar(1);
y=sdpvar(1);
Constraints1=[2*x-3*y >= -12 , x+y <= 14 , x>=0 , y>=0 , -3*x+y == -3 , 3*x+y == 30 ,];
objective=-x-2*y;
ops=sdpsettings('verbose', 0 , 'solver', 'cplex');
result2=optimize(Constraints1,objective,ops);
disp('****u1∈(0,1)∪(1,+∞)时的最优解和最优函数值*****')
if result2.problem==0
    disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
    disp(['最优函数值=',num2str(value(objective))])
else
    disp('无最优解')
end

%% u1=1
x=sdpvar(1);
y=sdpvar(1);
Constraints1=[2*x-3*y >= -12 , x+y <= 14 , x>=0 , y>=0 , -3*x+y == -3 , 3*x+y <= 30 ,];
objective=-x-2*y;
ops=sdpsettings('verbose', 0 , 'solver', 'cplex');
result2=optimize(Constraints1,objective,ops);
disp('***********u1=1时的最优解和最优函数值************')
if result2.problem==0
    disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
    disp(['最优函数值=',num2str(value(objective))])
else
    disp('无最优解')
end

运行结果:

        这样就完成了对上述简单线性双层优化问题的求解。通过下层优化的KKT条件将双层优化转换为单层优化是最常用的方法,但不是唯一的方法,后面我将继续更新这个系列,和大家一起学习双层优化问题。

参考文献:

[1] Bilevel Programming Problems

完整代码和相应资料可以从这里下载:

双层优化入门资料-基本原理和求解方法

双层规划模型是一种复杂的优化问题,在实际应用中往往需要借助求解算法来寻找最优解。遗传算法是一种启发式的优化算法,通过模拟自然界的进化规律,通过交叉、变异和选择等操作来迭代地搜索可行解空间,寻找问题的最优解。 下面是一个使用Matlab实现双层规划模型的遗传算法求解的简单示例代码: ```matlab function [x, y, obj] = genetic_algorithm() % 定义双层规划模型的目标函数和约束条件 f = @(x, y) x.*x + 4*y.*y; g1 = @(x, y) x + 2*y - 4; g2 = @(x, y) x + y - 3; % 定义遗传算法的参数 population_size = 30; % 种群大小 mutation_rate = 0.01; % 变异率 crossover_rate = 0.8; % 交叉率 max_generations = 100; % 最大迭代次数 % 初始化种群 population = rand(2, population_size) * 10; % 开始迭代 for generation = 1:max_generations % 计算种群中每个个体的适应度值 fitness = f(population(1,:), population(2,:)); % 执行选择操作 selection = select(population, fitness); % 执行交叉操作 crossover = crossover(selection, crossover_rate); % 执行变异操作 mutation = mutate(crossover, mutation_rate); % 更新种群 population = mutation; end % 计算最优解 x = population(1,1); y = population(2,1); obj = f(x, y); end ``` 以上代码只是一个简单的示例,实际的双层规划问题可能需要根据具体情况进行修改和优化。在实际应用中,还可能需要引入更多的算法技巧和优化方法,如种群大小的动态调整、精英保留策略和多次迭代等,以获得更好的求解结果。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

配电网和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值