用python进行碰撞动力学仿真

本文介绍了使用Python进行碰撞动力学仿真的过程,包括两球碰撞的数学模型、解题思路、程序编写以及不同碰撞类型(弹性与非弹性)的讨论。通过数值积分模拟两球在二维空间的运动轨迹,并通过动画展示碰撞效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用python进行碰撞动力学仿真

问题阐述

A,B两球在同一平面里,A球有一初速度,B球无初速度,一段时间后两球发生碰撞。
两球碰撞时接触力模型假设:
在这里插入图片描述
在这里插入图片描述
数值仿真:
在这里插入图片描述
(R为两球的半径,mA为A球质量,mB为B球质量,rA0为A球的初始位置,VA0为A球的初始速度,rB0为B球的初始位置,VB0为B球的初始速度。)

解题过程

解题思路

(1)两球之间的的距离r可以根据勾股定理求得。
(2)①当r>=2R时,两者间无作用力,各自的位置等于ri+v(i+1)dt。②当r<2R时,可以根据公式计算出它们间的作用力Fi,对于A为Fi,对于B为-Fi。根 据动量定理可得v(i+1)=Fidt/m+vi,r(i+1)=ri+v(i+1)*dt。
(3)作图。

程序编写

运用改进欧拉法来进行数值积分。
首先引入库。

from numpy import*
import matplotlib.pyplot as plt #引入库

参数初始化。

R = 0.02
ma = 0.1
mb = 0.1
k = 20000
df = 1.0
time = 0.1
dt = 0.0001 #设置数值

n = int(time/dt)
t = zeros(n,float)
ra = zeros((n,2),float)
rb = zeros((n,2),float)
va = zeros((n,2),float)
vb = zeros((n,2),float)
f = zeros((n,2),float)  #设置数值

ra[0] = array([0.0,0.0])
rb[0] = array([0.08,0.018])
va[0] = array([1.0,0.0])
vb[0] = array([0.0,0.0])  #初始化

因为是二维的,所以用向量来进行计算。
进行数值积分。

for i in range(n-1):
    dr = sqrt((ra[i][0] - rb[i][0])**2+(ra[i][1]-rb[i][1])**2)
    if dr >= 2*R:
        f[i] = 0 
        va[i+1] = va[i]
        vb[i+1<
### 使用Python在Webots中实现动力学仿真 为了利用Python在Webots中执行动力学仿真,开发者可以遵循特定的方法来设置环境并编写相应的脚本。Webots支持多种编程语言,其中包括Python,这使得通过该语言创建控制器变得简而高效[^1]。 #### 设置开发环境 安装必要的依赖项之后,在本地环境中配置好Webots以及对应的Python版本是首要任务。对于希望集成MATLAB与Webots进行联合仿真的用户来说,也存在相应指南支持材料[^4]。然而针对纯Python项目,则需关注官方文档中的说明部分,了解如何正确导入库文件,并确保路径无误以便顺利调用API接口函数。 #### 编写控制器代码 下面是一个简的例子,展示了怎样使用Python为一个两轮差动驱动的小车编写基本运动控制逻辑: ```python from controller import Robot, Motor TIME_STEP = 64 MAX_SPEED = 6.28 # 初始化机器人对象 robot = Robot() # 获取电机设备实例化对象 left_motor = robot.getDevice('left wheel motor') right_motor = robot.getDevice('right wheel motor') # 配置速度模式 left_motor.setPosition(float('inf')) right_motor.setPosition(float('inf')) while robot.step(TIME_STEP) != -1: # 设定左右两侧马达的速度(单位:radian/s) left_speed = MAX_SPEED * 0.5 right_speed = MAX_SPEED * 0.75 # 应用设定好的速度给实际硬件 left_motor.setVelocity(left_speed) right_motor.setVelocity(right_speed) ``` 此段程序实现了让虚拟世界里的小车子按照指定参数前进的功能;当然这只是入门级应用案例之一,更复杂的场景可能涉及到传感器数据处理、路径规划算法等多个方面的工作[^2]。 #### 动力学仿真特性 值得注意的是,由于Webots内部采用了ODE作为默认的动力学求解器,因此能够提供相对逼真且高效的碰撞检测及响应机制。这意味着当构建具有复杂机械结构或多体交互作用力场的应用时,无需担心底层物理计算层面的问题——这些都已经被妥善解决好了[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值