算法设计与分析学习笔记与习题2

这篇学习笔记探讨了算法设计与分析,首先对不同函数的增长次数进行了排序,并重点分析了一个计算平方和的算法,其基本操作是乘法,执行n次。接着,讨论了一个计算立方和的非递归算法,其乘法次数与递归算法相同,但避免了堆栈开销。最后,设计了一个基于2n=2n-1+2n-1的递归算法,虽然调用了n次,但在效率上远不如直接乘法。
摘要由CSDN通过智能技术生成

算法分析基础

5

根据下列函数的增长次数按照从低到高的顺序对他们进行排序:
原图
通过变换再参考下图
在这里插入图片描述
即可得出答案,按增长次数从高到低顺序排列如下:
在这里插入图片描述

6.a

证明当 ak>0 时,任何多项式p(n)=ak nk+ak-1nk-1+⋯+a0属于集合θ(nk )
证:
在这里插入图片描述

考虑下面的算法:

算法  Mystery(n)
	  //输入:非负整数n
	  s = 0
	  for i = 1 to n do
	  	s = s + i * i
	  return s

a、该算法求的什么࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值